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Abstract  Although multiprocessor systems are widely used in recent years to run commercial workloads,

data sharing patterns are rarely explored due to several difficulties. In this paper, we made in-depth sharing
pattern analysis for a representative OLTP application, the TPC-B benchmark, running on a cache-coherent
shared-memory multiprocessor system. In addition, to illustrate their effects on the performance, the number
of cache misses were measured for various numbers of processors, cache sizes and cache block sizes. From
these measurements, we found out the shared data m TPC-B largely bear quite different sharing

characteristics from those in scientific applications.

1. Introduction

Understanding the access patterns of shared data is the
key to obtaining good performance on shared-memory
systems. In this respect, scientific applications are fairly
well understood. However, in these years, since parallel
systermns are mostly used for commercial applications,
rescarchers in architecture are eager to explore the
behavior of parallel commercial workloads. Unfortunately,
DBMS programs are usually proprietary. Although the
POSTGRES95 [11] was released, the large number of
complex data structures, the complicated locking schemes
and very large size of the code make it difficult to
exploit for performance evaluations.
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Due to these reasons, relatively few results have been
published for commercial applications. Suggs and
Reynolds [12] presented the instruction fetch statistics of
TPC-B [7] workloads measured on the Motorola 88110.
Torrellas et al [14] and Bhandarkar [1] evaluated
commercial workload for the SGI multiprocessor and a
DEC Alpha AXP system. In [9], the performance of a
shared-nothing architecture is investigated using synthetic
workload and actual traces. Shared-nothing architectures
are preferred to shared-memory systems in {5]. The role
of IO subsystems in shared-memory systems was
investigated in [13]. In [15], the authors used
POSTGRES95 to show the memory performance of some
queries in TPC-D for various cache models on a
shared-memory system.

To obtain more results more easily, we have
developed our own DBMS called EZDB [8]. EZDB is a
parallelized DBMS loosely inspired from POSTGRES95,
which is able to execute parallel programs written in
SQL. Like POSTGRES95, EZDB is an in-memory

-121 -



relational database and makes no use of operating system
facilities. EZDB runs on top of a software simulator and
thus all events happening during the execution on a
simulated architecture can be traced.

Under the simulation environment including EZDB, we
ran our simulation to investigate the data sharing pattemn
of TPC-B. The cache size, cache block size and the
number of processors are changed to see their effects on
the number of cache misses for individual data structure
separately.

This paper is organized as follows. EZDB and TPC-B
are briefly described in Sections 2 and 3, respectively.
Section 4 presents the simulation methodology and
simulation results are presented in Section 5 along with
detailed analysis. We close this paper with concluding
remarks in Section 6,

2. EZ/DB

The architecture of the EZDB built based on the
general DBMS is shown in Figure 1. The black boxes
indicate the components implemented in EZDB; the
components in white boxes are not implemented. Note
that EZDB is not intended as a complete, usable
database system, but rather its purpose is to provide
researchers in architecture with detailed performance
information including the memory behavior of each
individual shared data structure.

Table 1 summarizes the implementation detail of
EZDB. Note the operating system normally is in charge
of file IO and memory management. But, since EZDB
keeps all data in memory and our simulation
envionment can only monitor the activiies of user
programs, no operating system activity is included in our
simulation. For more detail on EZDB, see [8]

3. OLTP Benchmark: TPC-B

The TPC benchmarks are standard benchmarks widely
used in industry to compare the performance of database
systems. The simplest among them is TPC-B whose
logical database model is given in Figure 2. The banking
transaction defined in TPC-B benchmark is given below.

BEGIN TRANSACTION

Update Teller where Teller_ID = Tid

Set Teller_Balance = Teller_Balance + Delta
Update Branch where Branch _ID = Bid

Set Branch_Balance = Branch_Balance + Delta
Update Account where Account_ID = Aid

Set Account_Balance = Account_Balance + Delta
Insert to History

Tid, Bid, Aid, Delta and Time_stamp

COMMIT TRANSACTION

4. Simulation Methodology

Figure 3 3illustrates our simulation method. The
simulation environment is the CacheMire testbench [3]
which executes parallelized applications to generate
instructions and memory references. CacheMire executes
the code of EZBD running the script file and generates
memory references. Instruction fetches, private and shared
data accesses and synchronization operations (test-and-set)
are monitored on the fly as the execution progresses.
The target architecture model is a cache-coherent
single-bus  shared-memory multiprocessors with up to 32
processors. The caches are 4-way set associative with the
LRU (least-recently-used) replacement policy. Data
coherence is enforced by the Illinois protocol.

In our simulation, all the database data are brought
initially into the main memory along with the metadata
and B-Trees so that we may track the accesses to shared
data structures. Therefore, IO activities are not simulated.
In addition, the instruction fetches and data accesses of
operating system processes are not included.

In our methodology, we collect a global trace on a
simulator of a four processor system which services 200
TPC-B transactions with four branches, 40 tellers and
400,000 accounts. The trace is then broken down into
200 small transaction traces, one for each transaction.

When the transaction traces are applied to a particular
configuration, we first warm up the caches by running the
200 transactions. After this initial mun, all metadata
structures, B-Trees, and small tables are in the main
memory and the caches are filled. The 200 trace files are
then applied again and measurements are taken. We
simulate configurations of up to 32 processors. Cache size
vares from 32 KBytes to 1 MBytes. We have looked at
cache block size between 8 and 1024 bytes. The main
memory in our simulation is 1 Gbytes with 4 KByte pages.
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5. Sharing Analysis

This section provides in-depth analysis of data sharing
behavior of TPC-B benchmark.

5.1. Sizes of Data Structures

The records in all database tables are 196 byte long
and each node in B-Trees holds 20 bytes. All shared
data are stored in less than 100 MBytes of main
memory. Table 2 shows the sizes of all shared data
structures.

5.2. Memory Access Counts

Table 3 shows the measurements obtained for average
transaction in the traces we collected. There are 34,258
instruction fetches per transaction. This number correlates
well with previous evaluations of TPC-B. For example,
Oracle on a Data General AViiON AV/8500 server
generated about 35,000 user instruction fetches per
TPC-B transaction [12]). Table 4 shows the number of
data accesses to each metadata, database data and index
data for the 200 transactions.

The accesses to metadata structures are mostly reads.
In particular, TableHead and RecordHead are read-only in
TPC-B. In TableTable one entry is updated once
whenever a History record is inserted resulting in a total
of 200 writes. One single field (id) of a record in each
of Branch, Teller and Account is updated. By contrast,
in History, all fields are written by insert operations and
the number of writes dominates. Since B-Trees are
updated only when a record is inserted or deleted in a
table the B-trees in TPC-B are read-only except for the
B-tree of History which is read-write.

5.3. Data Sharing (Infinite Caches)

Each graph in Figure 44 shows the number of misses
for one data structure in a system with infinite caches as
a function of block size. The five curves in each graph
comrespond to systems with different number of
processors. In the following we comment on the effects

of the block size and the number of processors. Accesses
to TableHead and RecordHead experience no miss
because they are read-only and the caches are warm at
the begiming of the simulation. Thus, we ignore these
data structures along with the Branch B-Tree and private
data.

5.3.1. Block Size

Looking at the curves for the total misses in Figure 4,
we observe some gains due to spatial locality for smaller
blocks, but, for larger blocks, the number of misses
increases, a sign that false sharing dominates. False
sharing is due to accesses to TableTable, History and
B-Tree of History. Now we discuss the accesses to data
structures, one after another.

The only interesting metadata is TableTable. Given a
query and a database table name, the records in
TableTable are searched to find the number of records of
the given table name and the number of fields in a
record. During a delete or insert operation the number of
the records of the table is updated in TableTable. In a
TPC-B transaction, there are four queries and, thus,
TableTable is searched four times per transaction. History
is the only table where one record is inserted in a
transaction and this causes cache misses on accesses to
TableTable in consecutive queries. Because the size of
TableTable is 104 bytes the number of false sharing
misses grows dramatically for block sizes of 64 and 128
bytes, but remains constant for larger blocks.

Among the tables in database, Branch and Teller are
the smallest ones. One integer variable, B_id or T_id, of
one record in Branch or Teller, respectively, is modified
once in a transaction. Since the size of each record in
these tables is 196 bytes, a block size smaller than 196
bytes does not affect the number of misses and all
misses are true sharing misses. Larger blocks will cause
false sharing misses. We observe more (false) sharing
misses in Branch than in Teller for larger blocks because
there are only four records in Branch Overall, the
number of misses on accesses to Branch and Teller is
small. Because there are 400,000 Account records and
only one record is accessed (modified) in a transaction,
the probability that an access to Account record hits in a
cache is almost zero. Thus, most of times, one (cold)
miss is counted in a transaction independently of the
block size. In the case of History, a new record is crea-
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Table 2. Shared data structures and their sizes

Data Metadata Database Data Index Data
Structures TableHead| TableTable |RecordHead| Branch Teller Account | History Branch Teller | Account | History
Size (bytes xitems)] 4 x| 26 x4 220 x4 136x4 196 x40 1196 x 400K| 196 x 1K 20x4 20x40 | 20x400K | 20x 1K
Table 3. Global access counts in the average TPC-B transaction
Compile Time ‘Transaction Processing
Instruciion Private Data fnstruction Private Data Shared Data
fetch Read | Wnite fetch Read | Write Read 1 Write | Lock
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Table 4. Access counts for individual data structures in 200 TPC-B transactions
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ted and inserted into the table in each transaction
and is never accessed again. On an insertion, a 196
byte record is filled, causing cold misses. Larger
blocks reduce the number of cold misses. However, if
the block is larger than 256 bytes, false sharing takes
over.

During a transaction, multiple nodes in B-Trees are
accessed to locate the record in a query. The B-Trees of
Branch, Teller and Account are read-only. Each query in
TPC-B updates the primary key field of a record of
History, and thus its B-Tree is updated. To understand
the memory behavior of B-Trees, consider a perfectly
balanced B-Tree4. Although the number of nodes in the
upper portion of the tree (near the root) is small, they
are accessed more frequently than the nodes in the lower
levels. Furthermore, the nodes in higher levels reside
closely to each other in physical memory. Therefore, in
a search operation, larger blocks bring more useful nodes
in the upper portion of the tree into a cache. For this
reason the B-trees of Branch, Teller and Account have
fewer misses for larger blocks. In particular, since the
size of the B-Tree of Teller is only 800 Bytes, it fits
into a 1024 byte cache block. Accesses to the B-Tree
for History cause false sharing misses. In consequence,
the number of misses ends up increasing for large block
sizes.

5.32. Number of Processors

In scientific applications, shared data structures are
partitioned and allocated among processors at the initial
stage of a program. Careful data partition and allocation
can minimize data communication. By contrast, in
TPC-B, any processor can access any portion of the
shared data. Therefore, most write-shared blocks are
migratory, ie. the ownemship of these cache blocks is
transferred among processors very often. Hence the
number of misses on every data structure in Figure 4 4
is drastically affected by the number of processors.

The effect of the number of processors is less
pronounced in Branch, Teller and Account than in
TableTable, History and B-Trees. The reason is that a
single integer variable is modified and communicated in
the first three data structures. On the other hand, even

though one single integer variable is modified in
TableTable and the B-Tree of History, the variables are
communicated multiple times during a transaction.
Finally, in History, a whole 196 byte record is modified
causing more misses.

54. Finite Cache Effects

We now consider finite cache sizes between 32
KBytes and 1 MBytes. The number of processors is four
and the block size is variable. The graphs in Figure 45
show that the block size minimizing the total misses of
TPC-B is around 128 bytes, for all cache sizes.
Moreover, the number of total misses is not very
sensitive to the cache size, implying that a small data
cache of 32Kbytes is sufficient for TPC-B.

To explain the cache size effects observed in Figure
54 on each individual data structure, we group data
structures into three classes. The first class includes the
metadata plus two database tables, ie. TableTable,
Branch and Teller. These data structures are all small
and accessed frequently. Therefore, they are rarely
victimized for replacements and the cache size has little
effect on their miss rate. The second class of data
includes Account and History and have little or no
temporal locality. Hence the number of misses is not
affected by the cache size, even though they are the
cause of most replacements. The only data structures
whose number of misses is sensitive to the cache size
are the B-Trees, especially the B-Tree of Account. The
temporal locality on accesses to a large B-Tree varies
across the tree. At the top of a B-Tree, the locality is
high and the hit rate is high independently of the cache
size. The locality decreases for lower levels of the tree.
The spatial locality is good and, for a given cache size,
we observe a constant decrease of the number of misses
with the block size. However, for a given block size, the
chances that a block is displaced in between two
consecutive accesses is higher when the number of
blocks decreases.
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Table 5. Sharing characteristics of shared data.

Stze Accesses Locality Sensitivity to
(bytes x itcms) Type Num- Spatial Temporal Cache Size |Num.Procs (2 | Block Sizc
ber (%) (32K to IM) to 32) (8 to 1K)
TableHead 4x1 RO 11.52 1 field 4 - - -
Moctadata TableTablce 26x4 R/W 923 4 records 4 low high high
RecordHead 220x 4 RO 10.78 + records 1 - - -
Branch 196 x 4 R/W 1.45 1 field 1 low low low
Database Teller 196 x 40} R/W 1.63 1 field 1 low low low
Data Account 196 x 400K R/W 221 - /4K fow low low
History 196 x 1K R/W 13.50 fow very high very high
Branch 20x4 RO 251 few nodes 174101 - - -
index Teller 20 x 40 RO 6.04 few nodes 174010 1 high high high
Data Account 20 x 400K RO 20.5% few podes | 17400K to | high high high
History 20 x 1K R/W 20.81 few nodes Otol high very high very high

5.5. Summary: Locality

Table 5 summarizes the memory behavior of all
shared data structures in TPC-B. The spatial locality is
defined as the amount of data in contiguous address
range accessed at a time. The temporal locality is
defined as the average number of the sequences of
accesses to a particular memory location per transaction.
The working sets of TablcTable, Branch and Teller tables
arc so small and they presented little sensitivity to the
changes of the cache size (Figure S5). Since the Account
and History tables bear no locality, they presentcd
negligible differences as the cache size vares. Finally, a
few nodes in the upper portion of B-Trees form a
working set and their sensitivities to the cache sizc is

significant as shown in Figure 5.

6. Conclusions

Obtaining  reliable
application behavior on existing DBMS is, for many

measurements  for  commercial
reasons, a very difficult task, which explains why
practically all evaluations of computer architectures done
today are based on scientific applications. This situation
is deplorable since most machines today are designed to
run commercial applications. To address this problem and
make progress in understanding commercial applications,
we have developed our own parallelized DBMS, which
we call EZDB. EZDB provides an easy-to-use platform

to run and evaluate database programs on multiprocessor
architectures.

We have applied the tool to the TPC-B benchmark
and have presented the unique characteristics of each
individual shared data structure including the localities,
working sets and cache misses over various cache sizes,
block sizes and numbers of processors. Overall, the
cache size does not play a critical role for the database
and metadata. On the other hand, some parts of the
B-Trees show good utilization of caches. Some spatial
locality also exists in the data base because of the large
record size. In consequence, the cache block size under
TPC-B is suggested to be larger than that used for
scientific applications.
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