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Phase Behavior of Reversibly Associating Star Copolymer-like Polymer Blends
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Abstract: We theoretically consider blends of two monodisperse one-end-functionalized homopolymers (denoted
by A and B) capable of forming clusters between functional groups (stickers) using weak segregation theory. In this
model system resulting molecular architectures via clustering resemble star copolymers having many A- and B-
arms. Minimizing the total free energy with respect the cluster distribution, the equilibrium distribution of clusters
is obtained and used for RPA (Random Phase Approximation) equations as input. For the case that polymers are
functionalized by only one kind of sticker, the phase diagrams show that the associations promote the macrophase
separation. When there is strong affinity between stickers belonging to the different polymer species, on the other
hand, the phase diagram show a suppression of the macrophase separation at the range of high temperature regime,
as well as the phase coexistence between a disordered and a mesoscopic phase at the relatively lower temperatures.
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Introduction

In recent years, it has been demonstrated that noncovalent
bonding can be used advantageously in constructing mole-
cular complexes and that the concept can be applied for
various applications such as the molecular construction for
polymer liquid crystals and nanostructures. The complexes
can involve hydrogen bonds, ionic interactions, coordination
complexes, charge-transfer interactions, ezc.' In the polymer
mixtures involving these “physical” interactions, the phase
behavior is very complicated due to the ubiquitous unfavou-
rable interactions between unlike polymer species competed
with these specifically attractive interactions between func-
tional pairs present in the polymer molecules. In the recent
experimental study investigated by Ruokolainen et al.*
poly(4-vinyl pyridine) (P4VP) was used as a model polymer
in combination with various end-functionalized oligomers.
The latter consists of a long alkyl tail and a functional head
group, which can form a hydrogen bond with the nitrogen
of the pyridine groups of P4VP. Similar studies are reported
by Russell et al’ and Iwasaki et al.® All these results de-
monstrate that the clusters resemble in many ways blocky
copolymers, and the system is able to form microscopically
ordered structure if the hydrogen bonding interaction is
strong enough to behave like a permanent covalent bond.

The theoretical study of such systems was initiated by
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Tanaka et al.” who considered a blend of two monodisperse
homopolymers capable of reversibly associating to each
other to form a diblock-like cluster, which is the most basic
example of molecular complex consisting of homopolymers.
More recently, a slightly different description was advanced
by Huh et al. and its theoretical results were numerically
confirmed by computer simulation.®® However, although
these studies of simple model system already give insight
about the phase behavior of associating polymer blends, the
model is oversimplified and hence, a more generalized
description for the association model is required to take into
account, for instance, the effect of polydispersity of cluster
size and the association between the same specie of poly-
mers.

In this paper, we will consider a theoretical model for
binary polymer blends capable of forming polydispersed
star-like clusters using weak segregation theory. The empha-
sis in this approach will be placed on the phase boundaries
of instability limit of homogeneous or disordered phases in
the blends consisting of polydispersed clusters.

Theory

Consider a molten blend of two associating homopoly-
mers A and B, which can form AB,, clusters. The total free
energy change of the system, f, can be described by the sum
of three parts:

f=fa+fmix+fmicro (1)
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where f, represents the free change due to the formation of
clusters via associations between polymers, f,, the free
energy change of mixing between these “physically” or
chemically polymerized molecular species and f.., the free
energy change due to the presence of the microstructure. To
construct the phase diagram, the total free energy in eq. (1)
has to be minimized both with respect to the distribution of
the AB,, cluster, {n;,,}, and the parameters of the micro-
phase separation (period, type of microstructure, amplitude):

oI (b ) =, T (D) + (T}
+fmix({nl,m}a 'f,)]

)

where the order parameter, ¥ describes the local density
fluctuation of A-monomer and the parameters of the micro-
structures are absorbed into ¥ The exact minimization in
eq. (2) is very complicated since the parameters describing
microstructures also depend on the distribution, {n;,}.
However, since in the weak segregation regime, i.e. ¥<<1,
Jomicro 18 small compared to the first two terms (f,+ f,.) in eq.
(1), the minimization can be approximated by

{n,,t’Z}i,nq/f({nl,m}’ .f,) E’{Tnlf:; [fa({nl,m}) +fmix({nl,m})
+ [fmicro({;ll,M}a '},)]
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where

£} i {un}) = m’"[fa({nzm})+fm.x({nzm})
*

Thus, the minimization in eq. (2) is much simplified by the
stepwise procedure of eq (3) and (4). The equilibrium cluster
distribution { 711,,,,} can be understood as a molecular weight
distribution of “physically” polymerized molecules. In fact,
in such dynamic equilibrium a cluster has a finite lifetime
(the mean lifetime of a hydrogen bond in water, for example,
is of the order of 10™"! seconds) and its size can be changed
at any time. However, the distribution, rather than individual
clusters, is unchanged under the dynamic equilibrium so
that “physically” polymerized molecular species are still
distinguishable. In other words, the association and dissoci-
ation of molecules in such a dynamic equilibrium can be
simply treated by static equilibrium distribution of clusters
as if all the clusters are frozen, which is essential point to
minimize the free energy of eq.(1).

Next we apply the theory to model systems. In the present
work, the two kinds of binary blends of one-end-functional-
ized polymers (A/B) are considered. In the model system I,
one of the end terminal groups of all polymers is functional-
ized by a sticker segment X. In the model system II, the
sticker in the one of the terminal groups of homopolymers is
different by homopolymer specie, i.e. homopolymers A are
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functionalized by a sticker X, whereas the homopolymers B
is functionalized by a sticker Y. Throughout these model
systems, all homopolymers consist of an equal number of
monomers, N. Also, for convenience the incompressibility
is assumed and the steric effect of a sticker on the associations
is neglected so that the model do not exclude the possibility
of multiple associations on a single sticker.

Model I . For this model system, each contributions to the
total free energy in eq. (1) are given by

/. Pum

kT Z : 5)
fmix _

T N(l+m) Ny &t 2001-6) ©)
fmlcro Tlfl +(xlII +ﬂlfl (7)
kT

Here f, is the free energy change of the formation of a single
association between X-stickers, y the Flory-Huggins inter-
action parameter between A- and B-monomers, and ¢,,, and
¢ the volume fraction of (/,m) cluster and A-monomers,
respectively. The 7,oc and S in the eq. (7) are the second, the
third and the fourth coefficients in the Landau free energy
describing the microstructure in the weak segregation
regime and related to the density correlation function of
A-monomer in the ideal state. According to eq. (4) the equi-
librium cluster distribution can be found by

O+ foni )]
a mix. - O (8)
[ a¢l,m 6T
with the condition of incompressibility
l m
¢—Lzml+m¢l,m’l_¢_l’zml+m¢l,m (9)

The resulting solution for the equilibrium cluster distribu-
tion is then given as

G = Kyt (10)
where the reaction constant X,
_ fa
K,,=exp l+m—1— (l+m) 1n

and u and v are the volume fractions of unassociated free
A- and B-polymer, respectively (¢=@, o and v=¢1). The
free energy change of a single association, f,, is expressed in
terms of the association energy of a bonding, &,, and the
entropic change upon formation of a bonding, s,

fo=&~Ts, (12)

In the case of hydrogen bonds, the bonding energy lies in
the range 1~10 kcal/mol and the magnitude of the entropic
change is the order of 10 cal/(Kmol), which corresponds to
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Figure 1. The equilibrium distribution of clusters as a function of
I, mfor {¢=025, g =-TksT, s, = -5ks}.

a value of s,=-5kg (the negative sign stands for the loss of
entropy due to directional nature of hydrogen bonding)."
Figure I shows an example of the cluster distribution calcu-
lated by eq: (10) with a choice of parameters, {¢=0.25, £,=
-TkgT, s, = -Skz}.

Inserting the equilibrium distribution of clusters obtained
from eq. (10) into eq. (5)-(7) gives the total free energy min-
imized with respect to @,,. Next, according to eq. (3) and
(4), the total free energy must be minimized about the
parameters describing microstructure and that is

minf(p, ¥) = £(6, ) +fous(4,,)
. (13)
+kpTmin [7(¢, ) Ve (9, ) Y+ B¢ ¥

Using this expression, the spinodal is found by the condi-
tion, T(¢, m) 0. For the calculation of the phase transitions
other than spinodal, one should first minimize f,,;.,, over the
type of microstructures such as lamellar and take the com-
mon tangents in the curves of total free energy as a function
of ¢. In the present work, however, the investigation of the
phase behavior is restricted to the derivation of instability
boundaries, i.e. spinodal. To find this, the second order
coefficient T( ¢ )1n eq. (13) must be evaluated According
to the Random "Phase Approximation,'" the second order
coefficient proportional to the inverse scattering is related to
the density correlation function of A monomers in a single
Gaussian chain, g;:

2 8(x)
i,j=A or B

ng ij(x)"

Here I'is often referred to as the second order vertex func-
tion. The scaled wave number x is related to the wavelength
of the A monomer density fluctuation and defined by

T=I(x*)-2y,[(x)= (14)
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x = ¢*<R%>, where q is the magnitde of the scattering vector
and <R%> the mean square radius of gyration of A(B)-polymer.
The x* stands for the dominant wave number that minimize
7. The density correlation function, g; appearing in this
equation, for the model system are given by

8aa(x) = ——(x+e - 1)(”+2—-K1 UV )

Lm

N e l(l-1 (15)
+5(1-€7) Lz’n:—(l;—mzK,,mu’vm
P ——(x+e —-1)(v+2 Mg v )
N 1) (16)
N ™= 2m(m— I m
+x2(1 ¢ )§ I+m Ky
8ap(x) = _x Z_Klm (17)

An important point in these equations is that unlike sys-
tems consisting of permanent bonds, the vertex function
itself in eq. (14) is also temperature dependent (see eq. 11)
i.e. I'= Ix, ¢, T) and hence, the spinodal condition, T(gb )
=1, for a fixed ¢ should be found by solving the followmg
equation,

2x(Ts) = I'(x*, 9, Ts) (18)

where T is the spinodal temperature. Eq. (18) is general for
both of the microphase separation (x* #0) and the mac-
rophase separation (x* = 0). For x* = 0 when the g;’s cannot
be calculated by the eq. 15-17, the vertex function should be
obtained by taking the limit of x — 0. Since the both sides
in eq. (18) have the temperature dependence, i.e. ¥ and f,/
kT in I, the eq. (18) can only be solved by taking an
explicit expression for the relation between y and f,/kzT. By
introducing a parameter r, f, is given as

fo _ & S
T T ko NX_ (19
The parameter r is, roughly speaking, the ratio between the
association energy (€,) and the dispersive interaction energy
of the whole chain (NyksT), and so it depends not only on
the type of A- and B-monomers and the character of the
association, but also on the number of monomers per chain.

Figure 2 presents the spinodals for the model system I
with different choices of the association parameters, com-
pared to the case of the binary blend without stickers. Figure
2 shows that the instability of homogeneous phase is always
attributed to a macroscopic separation and there are no
microscopic separations. Furthermore, as the affinity
between X-stickers increases (larger r or smaller s,), the
macrophase separation is promoted and the critical points
are lower than that in the case of the binary blend without
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—— Without sticker
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Figure 2. The spinodal values of Ny vs. the fraction of the A-
monomer for model L

stickers (Ny = 2). This can be explained as follow. Since the
model system I has only one type of sticker X, all the pair-
wise associations between polymer species, i.e. AA, AB
and BB, are equally probable and therefore, the fraction of a
cluster does not depend on the polymer species but only on
the total number of polymers in the cluster. Obviously,
clusters consisting of same polymer species (AA, BB) con-
tribute to promote demixing of the mixture whereas AB-
type clusters can act as compatibilizers for the mixture when
the degree of heterogeneity of cluster exceeds a certain cri-
teria. Therefore, two opposing effects compete each other
but in the case of model system I, the former contribution
always dominates over the latter. This can be shown more
rigorously. According to the eq. (18), the resulting spinodal
condition for the macrophase separation for this case is in
the form of

2

Ni= (20)
where 7 is the average number of molecules in a cluster and
¢ the fraction of heteroclusters that contribute to suppress
the macrophase separation, i.e. compatibilizer. In all cases
in the model system I, we found that ng >1 and therefore,
the association promotes the macrophase separation.

Model II. As described previously, this model system of
binary blend consists of A-polymers functionalized by X-
sticker and B-polymers functionalized by Y-stickers. In this
case, unlike the model system I, the degree of the associa-
tion between polymers depends not only on the number of
polymers per a cluster but also on the pair of the association.
Taking into account the pairwise association between stick-
ers, the formula for £ is expressed as

fa — ¢I,m
ksT ~ &Nk, T(1+m)

[+ Pxxfyr + nyfrel 21

where n; is the mean number of the physical bonding
between the sticker i and j in a (/,m) cluster and f; the free
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Figure 3. The spinodal values of Ny vs. the fraction of the A-
monomer for model II with {rxx =ryy=0.1, rxy=2.0, s,=-
Skg}. “h”, “d’, and “m” represent the homogeneous, disordered,
and mesoscopic phase, respectively and “+” stands for the phase
coexistence.

energy change of a single association between the sticker i
and j. The other contribution to the total free energy, £, and
Joicro are the same as in the model I (eq. (6) and (7)). Also,
the free energy changes of the pairwise association free
energy, f;, are defined in similar way:

k%“ = —ryNy— 2—8 22)
Using the same procedure described in the model I, the
spinodal can be calculated and the result is presented in the
following.

Figure 3 presents the spinodal for the model system II
with the choice of association parameters {rxx = ryy = 0.1,
rxy = 2.0, s,=-5kg}, which corresponds to a symmetric
association with a preferential affinity between sticker X
and Y (rxy > ryx = ryy). Unlike the phase diagram in the
model system I where only the macrophase transitions
appear, the spinodal in figure 3 shows not only the mac-
rophase separation but also the microphase separation. In
particular, if ¢ 0.5, the phase of the mixture undergoes
from a homogeneous phase to a microscopically ordered
phase followed by the phase coexistence between a disor-
dered and a microscopically ordered phase, as Ny increases
(the temperature decreases).

Figure 4 shows the scattering function for the case of
{rax=ryy =0.1, ryy =2.0, s, = -5kp, $=0.5}. The scatter-
ing function is obtained from the inverse of I-2y. In this
plot of scattering, the position of the dominant fluctuation
x* moves from x* =0 toward a larger value of x* as Ny
increases, indicating that the characteristic length scale of
A-monomer density fluctuation becomes smaller and hence
the mixture is microscopically separated if the transition is
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Figure 4. The scattering function, S, as a function of the scaled
wave number x and Ny for model II with {rxx =ryy=0.1,
sy = 20, S = -SkB, ¢ = 05}

x*#0
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Figure 5. The boundary between x*=0 and x*#0 in (¢,Ny)
space for model II with {rxx = ryy = 0.1, rxy = 2.0, 5, = -5kg}.

reached. The condition for the change of the dominant fluc-
tuation from x* = 0 to x* # 0 is found from:

5, @

The solution of the eq. (23) with respect to  and ¢ is shown
in Figure 5 with the same association parameters used in
Figure 3. The solid circle represents the Lifshitz point at
which both of the egs. (18) and (23) are satisfied, corre-
sponding to a multicritical point connecting the homoge-
neous, the macroscopically ordered, and the microscopically
ordered phase transition.

Figure 6 shows the spinodal for the case of {rxx=ryy
=0.1, rxy=1.5, s,=-5kz}. The weaker bonding energy
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Figure 6. As in figure 3, but now with {ryx=ryy =0.1, rxy = 1.5,
S = -SkB}.
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Figure 7. As in figure 3, but now with {rxx=1.0, rvy=0.1,
Ixy = 1.5, S = -SkB}'

between unlike stickers, rxy = 1.5, in this case leads to two-
phase coexistence between disordered phases at the relatively
low values of Ny. This phase coexistence disappears and the
mixtures are homogenized when the temperature is low
enough to create more heteroclusters acting as compatibi-
lizers for the mixture. At the even lower temperatures corre-
sponding to larger Ny, the phases are microscopically
ordered (¢ = 0.5) or two-phase coexistence between a disor-
dered and a microscopically ordered phase occurs (¢ # 0.5)
as similar to that in Figure 3.

In Figure 7, the spinodal is calculated for the case that the
bonding energy between X-stickers increases to rxx=1.0,
while the other association parameters are the same as that
in Figure 6. The resulting phase diagram is dominated by
various types of two-phase coexistence, which is due to the
increase in the number of the formation of AA-type clus-
ters.
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Concluding Remarks

In this paper, the phase behavior of reversibly associating
star-like A/B homopolymer blends was investigated theo-
retically in the weak segregation limit. Our theoretical
treatment based on the stepwise minimization procedure
greatly simplifies the calculation of phase transitions in this
complicated blends involving complexes. The correct pro-
cedure would be to minimize the total free energy with
respect to all parameters. However, as long as the weak
segregation limit is validated so that f, + f >> foier» the
stepwise minimization can be justified and becomes fairly
good approximation.

The main result in the model system I, where polymers
are functionalized by only one kind of sticker, is that the
association always promotes the macrophase separation and
the wavelength of the dominant density fluctuation is infi-
nite over the entire range in the ¢-7 space. A suppression of
such undesirable macrophase separation is observed only in
the model system II when the energy of the bonding
between unlike species is stronger than that between the
same species. The model system II exhibits more variety in
morphologies including the phase coexistence between a
disordered and a macroscopically ordered phase. However,
in order to construct a full phase diagram including the first
order transition between microstructures with different
symmetries (lamellar, hexagon, BCC, -efc), one should
include the expansion terms of f,,.,, higher than the second
order in the total free energy. The main difficulty in calculat-
ing a full phase diagram for such a polydisperse system like
the mixture in the present study arises from the presence of
additional nonlocal term, which is attributed to the polydis-
persity and vanishes in a monodisperse system. For
instance, in the case of a random copolymer, Shakhnovich
and Gutin derived the nonlocal term which accounts for the
chain connectivity.'? They found that the nonlocal term is a
dominant contribution in the vertex functions since only
self-correlations survive in the regular vertex function repre-
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senting local interaction and the correlation other than the
self-correlations are all cancelled out. Therefore, the nonlo-
cal term for a random copolymer system is only difference
from a corresponding low molecular mixture of discon-
nected monomers. Within the Landau free energy, such non-
local term appears in the fourth order term and does not
modify the second order term, i.e. spinodal instability is not
affected by the nonlocal term, which is investigated in the
present study. The full phase diagrams including the nonlo-
cal term will be calculated in the future work.
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