Zirconocene-catalyzed Copolymerizations of Ethylene with 5-Methyl-1,4-hexadiene as Non-conjugated Diene

  • Jin, Yong-Hyun (Department of Textile Engineering, Hanyang University) ;
  • Im, Seung-Soon (Department of Textile Engineering, Hanyang University) ;
  • Kim, Sang-Seob (Polymer Hybrids Center, Korea Institute of Science and Technology) ;
  • Soonjong Kwak (Polymer Hybrids Center, Korea Institute of Science and Technology) ;
  • Kim, Kwang-Ung (Polymer Hybrids Center, Korea Institute of Science and Technology) ;
  • Kim, Keon-Hyeong (Polymer Hybrids Center, Korea Institute of Science and Technology) ;
  • Kim, Jungahn (Polymer Hybrids Center, Korea Institute of Science and Technology)
  • Published : 2002.04.01

Abstract

The mixtures of non-conjugated dienes, 4-methyl-1,4-hexadiene and 5-methyl-1,4-hexadiene (MHD), were successfully synthesized by the reaction of isoprene with ethylene using Fe(III)-based catalyst in toluene. The conversion was over 96 mol% on the basis of the initial amount of isoprene used. The production yield for MHD was nearly 50 mol%, the other was polyisoprene. The mixtures were successfully copolymerized with ethylene by using zirconium-based metallocenes. The products were characterized by the combinations of gas chromatography, high temperature gel permeation chromatography, $^1$H NMR, $^{13}$ C NMR, high temperature $^1$H NMR, UV/visible spectroscopy, and differential scanning calorimetry. It was found that 5-methyl-1,4-hexadiene was active enough to be incorporated into the copolymer chain but the corresponding isomeric material,4-methyl-1,4-hexadiene, was inactive in metallocene-catalyzed copolymerizations. Specifically, in the zirconocene-catalyzed copolymerizations of ethylene with MHD, ansa-structure catalysts seem to be more efficient than non-bridged type zirconocene. The degree of incorporation of MHD in the resulting copolymers was able to be controlled by the amount of non-conjugated dienes used initially.

Keywords

References

  1. Adv. Organomet. Chem. v.18 no.99 H. Sinn;W. Kaminsky
  2. Angew. Chem. Int. Ed. Engl. v.34 no.1143 H. H. Brintzinger;D. Fischer;R. Mulhaupt;B. Rieger;R. M. Waymouth
  3. Macromol. Chem. Phys. v.197 no.3907 W. Kaminsky
  4. J. Am. Chem. Soc. v.120 no.1082 R. W. Barnhart;G. C. Bazan
  5. J. Am. Chem. Soc. v.120 no.2308 L. Resconi;F. Piemontesi;I. Camurati;O. Scedmeijer;I. E. Nifantev;P. V. Ivchenko;L. G. Kuzmina
  6. Macromolecules v.21 no.3356 N. Ishihara;M. Kuramoto;M. Uoi
  7. Macromolecules v.26 no.6399 D. J. Duncalf;H. J. Wade;C. Waterson;P. J. Derrick;D. M. Hadleton;A. McCamley
  8. Macromolecules v.30 no.1875 Y, Li;D. G. Ward;S. S. Reddy;S. Collins
  9. Macromolecules v.22 no.2129 A. Zambelli;L. Oliva;C. Pellecchia
  10. Korea Polym. J. v.8 no.44 J. Kim;K. H. Kim;Y. H. Jin;H. Ryu;S. Kwak;K. U. Kim;S. S. Hwang;W. H. Jo;J. Y. Jho
  11. Macromolecules v.25 no.233 S. Collins;W. M. Kelly
  12. Macromolecules v.30 no.3151 W. M. Kelly;S. Wang;S. Collins
  13. Macromol. Symp. v.95 no.167 M. Arndt;W. Kaminsky
  14. J. Am. Chem. Soc. v.120 no.2039 R. Kravchenko;A. Masood;R. M. Waymouth;C. L. Myers
  15. J. Am. Chem. Soc. v.114 no.4623 P. J. Shapiro;W. D. Cotter;W. P. Schaefer;J. A. Labinger;J. E. Bercaw
  16. Modern Plastics Int. v.33 D. Schwank
  17. Korea Polym. J. v.9 no.71 D. H. Lee;S. K. Noh
  18. Korea Polym. J. v.8 no.231 D. H. Lee;H. Lee;W. S. Kim;K. E. Min;L. S. Park;K. H. Seo;I. K. Kang;S. K. Noh;C. K. Song;S. S. Woo;H. J. Kim
  19. Polym. Sci. Technol. (Korea) v.9 no.17 J. Kim;K. H. Kim;S. Kwak;K. U. Kim
  20. J. Polym. Sci.: Part A: Polym. Chem. v.33 no.829 T. C. Chung;D. Rhubright
  21. Macromolecules v.21 no.865 T. C. Chung
  22. Macromolecules v.31 no.4396 U. M. Stehling;E. F. Malmstrom;C. J. Hawker
  23. Macromolecules v.32 no.1348 N. Naga;T. Shiono;T. Ikeda
  24. U. S. Pat. 3,904,704 J. G. Bryson
  25. J. Am. Chem. Soc. v.64 no.3903 G. Hata
  26. Macromol. Chem. Phys. v.199 no.1451 D. Coevoet;H. Cramail;A. Deffieux
  27. Macromol. Chem. Phys. v.200 no.1215 J.-N. Pedeutour;D. Coevoet;H. Cramail;A. Deffieux