Molecularly Imprinted Polymers Having Amidine and Imidazole Functional Groups As an Enzyme-Mimetic Catalyst for Ester Hydrolysis

  • Chen, Wen (Functional Polymer Laboratory, Korea Institute of Science and Technology) ;
  • Han, Dong-Keun (Functional Polymer Laboratory, Korea Institute of Science and Technology) ;
  • Ahn, Kwang-Duk (Functional Polymer Laboratory, Korea Institute of Science and Technology)
  • Published : 2002.04.01

Abstract

A molecularly imprinted polymer (MIP) having both amidine and imidazole functional groups in the active site has been prepared using p-nitrophenyl phosphate as a transition state analogue (TSA). The imprinted polymer MIP with amidine and imidazole found to have the highest hydrolysis activity compared with other MIPs with either amidine or imidazole groups only. It is postulated a cooperative effect between amidine and imidazole in the hydrolysis of p-nitrophenyl methyl carbonate (NPMC) as a substrate when both groups were arranged in proximity by molecular imprinting. The rate enhancement of the hydrolysis by MIP was 60 folds over the uncatalyzed solution reaction and two folds compared with the control non-imprinted polymer CPI having both functional groups. The enzyme-mimetic catalytic hydrolysis of p-nitrophenyl acetate by MIP was evaluated in buffer at pH 7.0 with $K_{m}$ of 1.06 mM and $k_{cat}$ of 0.137 $h^{-1}$ . . .

Keywords

References

  1. Chem. Rev. v.102 no.1 G. Wulff
  2. Angew. Chem. Int. Ed. Engl. v.34 no.1812
  3. Chemtech. v.19 no.19
  4. Polymer Sci. & Technol. (Korean) v.9;11 no.137;332 K.-D. Ahn;J.-M. Kim
  5. Adv. Mater. v.12 no.311 F. L. Dicker;O. Hayden
  6. Trend Biotech. v.19 no.9 S. Piletsky;S. Alcock;A. R. F. Turner
  7. Angew. Chem. Int. Ed. Engl. v.39 no.1031 B. Sellergren
  8. Adv. Mater. v.13 no.467 M. Whitcomb;E. N. Vulfson
  9. Adv. Mater. v.12 no.1019 H. Asansuma;T. Hishiya;M. Komiyama
  10. J. Chromatogr. A. v.938 no.131 A. Kugimiya;Y. Kuwada;T. Takeuchi
  11. Anal. Chem. v.69 no.345A O. Kriz;O. Ramstrom;K. Mosbach
  12. Science v.252 no.659 R. A. Lerner;S. J. Benkvoic;P. G. Schultz
  13. React. Polym. v.6 no.285 A. Leonhardt;K. Mosbach
  14. J. Chem. Soc., Chem. Commun. v.969 D. K. Robinson;K. Mosabach
  15. J. Mol. Catal. v.87 no.L21 K. Ohkubo;Y. Urata;S. Hirota;Y. Honda;Y. Fujishita;T. Sagawa
  16. J. Am. Chem. Soc. v.116 no.379 J. V. Beach;K. J. Shea
  17. J. Org. Chem. v.65 no.4009 B. Sellergren;R. N. Karkalkar;K. J. Shea
  18. Macromol. Chem. Phys. v.202 no.1105 J.-M. Kim;K.-D. Ahn;G. Wulff
  19. J. Am. Chem. Soc. v.122 no.6295 A. G. Strikovsky;D. Kasper;M. Grun;B. S. Green;J. Gradil;G. Wulff
  20. Angew. Chem. Int. Ed. Engl. v.36 no.1962 G. Wulff;T. Gross;R. Schonfeld
  21. Bull. Korean Chem. Soc. v.22 no.689 J.-M. Kim;K.-D. Ahn;G. Strikovsky;G. Wulff
  22. Adv. Mater. v.10 no.957 G. Wulff;R. Schonfeld
  23. J. Am. Chem. Soc. v.87 no.296 C. G. Overberger;T. St. Pierre;N. Vorchheimer;J. Lee;S. Yaroslavsky
  24. React. & Func. Polym. v.39 no.37 B. S. Lee;M. G. Kulkarni;R. A. Mashelkar
  25. Bioorganic Chemistry(Third Ed.) H. Dugas