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Abstract : Although the reptational model of Doi and Edwards gives a successful description of viscoelasticity of
flexible linear polymers, the success is restricted to the terminal region.' There have been several attempts to modify
the Doi-Edwards model to describe wider range of time or frequency.”® This paper suggests a simple phenomenological
model which can describe wider range of molecular weight than such molecular models can. Although our model is
a phenomenological one, it is practical and convenient to predict the effect of molecular weight distribution on linear
viscoelastic data because of its simple mathematical form.
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Introduction

Even in linear region of deformation, most polymers show
very complex viscoelastic behavior that prohibits simple
modeling with a few parameters. Such complexity may result
from molecular weight distribution (MWD) of polymer.
Thus, the first step of understanding linear viscoelasticity
(LVE) of polymers must be to understand LVE of monodis-
perse polymers. The second step may be to know the LVE
of their mixtures. The last step may be to determine the
MWD from LVE of polydisperse polymers.

Before the Doi- Edward (DE) model” appeared, the gener-
alized Maxwell (GM) model seems to have been one of the
most efficient way of modeling LVE of polymers. In case of
the GM approach, the most interesting theme is to deter-
mine or model the relaxation time distribution (RTD).
Determination of the RTD from the LVE implies to solve an
integral equation, which is known as an ill-posed problem.?
Although the GM model gives very accurate curve fitting, it
is not a convenient way when one wants to connect LVE
with MWD.

The DE theory achieved outstanding success in LVE of
polymers. It explains molecular weight dependency of vis-
coelastic functions. However, the theory is restricted to the
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terminal region of entangled polymer melts. In the DE theory,
the plateau modulus GY is independent of molecular
weight and is the common scale factor of viscoelastic func-
tions such as the zero shear viscosity 7, the steady-state
compliance JY and so on.

There have been several attempts to modify the DE model
to fit entire range of LVE. Since all these theories are based
on the DE model, the scale factor of the moduli is the plateau
modulus that is difficult to be determined when molecular
weight is not larger than about ten times of the entanglement
molecular weight M, . This implies that any model scaled
by the plateau modulus suffers from difficulty in extension
to low molecular weights where the plateau is not clear.

To the knowledge of authors, Lins model’ was the first
successful modification of the DE model. Although the
model was for the relaxation modulus of polymers with
very narrow MWD, in curve fitting, it used discrete MWD
with 3 peaks, which must be different from a real MWD.

Benallal et al.® developed a molecular model as a simple
sum of the reptation and the Rouse modes, contour length
fluctuation, and the glassy mode. Although the model
describes well the LVE of monodisperse polymers with var-
ious molecular weights for wide range of frequency, there is
a considerable discrepancy in the loss modulus after the ter-
minal region. Since the model is also based on the DE
model, the dynamic and the relaxation moduli are scaled by
the plateau modulus.



A Phenomenological Model for Linear Viscoelasticity of Monodisperse Linear Polymers

Milner and McLeish* did another remarkable molecular
modeling, which is also a modification of the DE model. In
this model, there is no discrepancy in the loss modulus, dif-
ferent from the model of Benallal e al. Furthermore, their
approach is applicable to star polymers as well as linear
polymers. However, since their model is also a modification
of the DE model, the authors did not compare their model
with the LVE of the molecular weight range 10M,> M > M.,.

Chung and coworkers® also contributed in solving the
discrepancy of the original model of Doi and Edwards at
high frequency based on slip-link model. Their work is to
improve the process X introduced by Lin with more theoret-
ical basis.

Larson and coworkers® did more precise quantitative
prediction of LVE for not only monodisperse polymers but
also their mixtures. Their approach is a numerical integration
of the modified diffusion equation of the reptation. The
relaxation modulus is the sum of the Rouse mode from
analytical calculation and the reptation mode from the
numerical integration. Although their prediction was very
precise, all moduli are scaled by the plateau modulus.

In this paper, we aim to develop a simple phenomenologi-
cal model for monodisperse polymer, which can cover the
molecular weight range of M > M.,. Its simple mathematical
form is efficient in application to the prediction of MWD
from LVE of polydisperse polymers.

Theory

The Limit of Molecular Models. The most important
success of the DE model is to predict the molecular weight
dependence of the zero shear viscosity 7, for entangled
polymer melts. The theory reads’

2
T
No = 1_'2G§\(I))Td e))
and
Ty M (2)

where G’ is the plateau modulus, 7, is the disentangle-
ment time and M is molecular weight. Eq. (1) agrees well with
experimental data for M » M, . The DE theory’ explains the
LVE of monodisperse polymer by the two characteristic
times 7, and 7, . The second characteristic time 7, indicates
the start of the plateau of the relaxation or the storage modu-
lui. Since the model assumes the existence of the plateau
modulus and uses it as the common scale factor of the zero
shear viscosity, dynamic moduli, and the steady-state com-
pliance J,, the model is not valid when the plateau modu-
lus cannot be determined. In other words, this theory cannot
be applied to the monodisperse polymers without fully
developed entanglement. From the help of the experimental
data of Schausbergers et al.,' one can recognize that the
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plateau is not clear when M <10M, . In order to use LVE of
monodisperse polymer for the prediction of those of poly-
disperse polymers, a candidate model must describe LVE of
the monodisperse polymers of M <10M, .

The Boltzmann superposition principle reads an exact
relation between the zero shear viscosity and the relaxation
modulus G(¥):

Mo = IO G(r)dr ®)

Figure 1 shows schematic behavior of the relaxation moduli
of monodisperse polymers. The area [a] in Figure 1 can be
approximated by Eq. (1). When M >10M,, the plateau can
be defined even though the plateau is not perfectly flat.
However, when M < 10M,, the two characteristic times T,
and 7, are so close that the plateau may not be defined
clearly. Thus, when M < 10M, , the integration Eq. (3) cannot
be approximated by Eq. (1) because the area [b] in Figure 1
is comparable with the area [a] even though the plateau
modulus determined from the LVE of polymers with
M>10M,, is used. Thus, it is necessary to replace the pla-
teau modulus by more generalized scale factor.

The More Generalized Scale Factors of Modulus. To
develop a phenomenological model for monodisperse
polymers, the experimental data of Schausbergers et al.! are
chosen since they provide tabulated data as well as graphs.
They measured LVE of nearly monodisperse polystyrenes
with wide range of molecular weights. The reference tem-
perature is 180°C. Their data are redrawn in Figure 2. The
molecular weights of the samples in Figure 2 are shown in
Table I.

From the Boltzmann superposition principle, the zero
shear viscosity and the steady-state compliance can be
obtained from the dynamic moduli”:
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Figure 1. Schematic representation of the relaxation modulus for
various molecular weights.
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As shown in Figure 2, the storage and the loss moduli do
not have simple forms. However, they have locally power-law
type behavior. In Figure 2, one can see that at high fre-
quency, the storage moduli of various molecular weights
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Figure 2. Data of Schausbergers et al.' The storage (open sym-
bols) and the loss (solid symbols) moduli of polystyrene. The ref-
erence temperature is 180°C. Samples are specified in Table L.

Table L. Data of Molecular Weights (Schausberger et al.")

Sample M, M, /M,
PS1 34,000 1.05
PS2 65,000 1.02
PS3 125,000 1.05
PS4 292,000 1.09
PSS 757,000 1.09
PS6 2,540,000 1.13
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look like a single function of frequency. In the terminal
region, the dynamic moduli of different molecular weights
look like having similar frequency dependency if they are
horizontally shifted according to molecular weight. This
becomes clearer in the loss modulus. This implies that LVE

‘of monodisperse polymers seems to be, at least, the sum of two

functions of frequency. The one represents the reptational
mode which can be superposed by a horizontal shifting
factor dependent upon molecular weight and the other re-
preserits the glassy mode.

If the data of Schausbergers et al. are redrawn as the plots
of g'(w)/A; and g"(w)/1, against @, then the plots look
like

gl 1
A (1+n0) ©)
gl 1

T (1+1,0)

in the terminal region (Figure 3). Since the exponents p
and g can be easily obtained as the slopes of the log-log
plots, it is not difficult to determine the characteristic time #,
by regression analysis. By the dimensional analysis of 7,
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Figure 3. Normalized g'(®) and g”(®) (a) and their superpo-
sition by molecular weight shifting factor ay, (b).
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Ag, and 1,4, one can define two moduli which can be used as
the scale factors for the dynamic moduli instead of the pla-
teau modulus:

,_Ag

Gy=—

0 ti
10)

.o

Gy = L,

From the help of Eqgs. (4) and (5), we have
Gy =Gy (1)

Since the terminal behavior Eq. (6) is clear for any molec-
ular weight, the scale factors for modulus, G, and G,” can
be determined from any experimental result irrespective of
molecular weight. Thus, the new scale factors G, and G,”
are more generalized than the plateau modulus Gy© in this
respect.

The shapes of g’(w)/A; and g”"(w)/1, in Figure 3(a) are
almost independent of molecular weight and they can be
superposed by a horizontal shift factor. Figure 3(b) is a
superposed version of Figure 3(a) where data are horizon-
tally shifted until data of the terminal region are coincided.
The superposition of Figure 3(a) makes it clearer that the
dynamic moduli are the sum of the two functions, called the
reptational and the glassy modes. The branching of
g"(w)/n, at higher frequency corresponds to the glassy
mode.

The glassy modes of different molecular weights in Figure
3 look like an identical form if they are shifted by an appro-
priate vertical shifting factor, which is dependent upon
molecular weight. This implies that there is another scale
factor of modulus for the glassy mode, say G,. Thus, we
suggest mathematical forms of the dynamic modulus as fol-
lows:

2.2
G(w)= Go'i‘o—p +G f ()
(1+1,0) a12)
” ” 1,0 77,
G'(w) =G, m+Ggf (w)

d

where G,', G,", and G, are the new generalized scale
factors which are dependent on molecular weight, and f'(w)
and f"(w) are functions of frequency to be determined by
experimental data. Of course, f(®) and f"(@) are indepen-
dent of molecular weight, since they represent the glassy
mode and all molecular weight dependency are concentrated
on G,.

The Characteristic Times. At long time scale or in mol-
ten state, the main stress contribution originates from the
entropy change of chain conformation. However, at short
time scale or in glassy state, the main contribution of stress
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results from interaction energy of the segments in polymer
chains. Thus, it is a reasonable viewpoint that there are two
relaxation modes according to the origin of stress. One is
the relaxation of the entropic stress that may be expressed
by the gradient of the conformational entropy with respect
to an appropriate strain measure. The other is the relaxation
of the energetic stress, called the glassy mode. The former
represents the long spatial-range interaction by topological
constraints and the latter the short spatial-range interaction
between the segments, which includes the intramolecular
and the intermolecular interactions.

Thus, from above reasoning, one may think that there are
two characteristic time scales for each relaxation mode. The
first characteristic time can be chosen as t, which is a func-
tion of molecular weight and temperature. It must depend
on the reptational diffusion length L(M,T) and the repta-
tional diffusion coefficient D(M,T):

tdz— (13)

The second characteristic time £, must be independent of
molecular weight since it represents the short-range interac-
tion. It must be a function of parameters of the segments
such as monomeric friction coefficient and the size of the
segments.

Assuming the time temperature superposition (TTS), the
two characteristic time scales must have the same tempera-
ture dependence, called the temperature horizontal shift factor
ar. Since the experimental data in Figures 2 and 3 show that
both the reptational and the glassy modes of different
molecular weights have very similar shape except that the
reptational mode is horizontally shifted by molecular
weight, it is reasonable assumption that the reptational char-
acteristic time f, consists of two horizontal shift factors ay
and a,,:

t,=t7ay,a, (14

to = tyla;

The molecular weight dependency of a; can be deter-
mined from experimental data which are shown in Figure 4.
In order to guarantee TTS, Eq. (12) must be

2 2

t
G (@)= Gy —2— + G f(1,0)
(1+r,0)

G(0) =Gy —22— 1+ G f (1,00)

(1+t,0)°

(15)

The characteristic time #, determines the location of the
functions f” and f” in the plots of the dynamic moduli versus
frequency.

The Model. Finally, we suggest following model for the
dynamic moduli of monodisperse polymers:
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Figure 4. The molecular weight shifting factor ay, as a function
of molecular weight.
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The molecular weight dependency of G, and G, can be
determined by the slopes of the dynamic moduli in the ter-
minal region, A; and 7], respectively. Figure 5 shows
molecular weight dependencies of A; and 1,. Figure 6
shows the molecular weight dependency of G," and G’

when the reference time ;7 was chosen as the reptational

characteristic time of PS6 (7;7=3965sec). Since the
nature of G, and G, is very similar to that of the plateau
modulus, G,, and G, become constant as molecular
weight increases. On the other hand, both of them increase
as molecular weight decreases. Such molecular weight
dependency is the same as that of the inverse of the steady-
state compliance J”."® Experimental data of Figure 6 are
fitted well by following equations:
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Figure 5. Molecular weight dependency of the zero shear viscos-
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Figure 6. The modulus scale factors for the reptational mode,
G, and G, as functions of molecular weight.

where C,,C,",Cy , and C,” are material constant with
dimension of modulus and M, is a critical molecular weight.
Differently from G, and G,” , experimental data are not
sufficient to describe molecular weight dependency of G, .
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However, most physical properties of polymers increase as
molecular weight until certain critical molecular weight and
after the critical molecular weight, the physical properties
are nearly constant.”® Such molecular weight dependency
may be approximated by
G
L 18
Ge 1+M/M (18)
where G_ is the glassy modulus at infinite molecular
weight, M_ is chosen as the same molecular weight in Eq.
a7).

Results and Discussion

To obtain the data of Figure 6, t, was determined by non-
linear regression and superposition of Figure 3. The shift
factor ay, as a function of molecular weight is shown in Fig-
ure 4. The regression of a,, with respect to M results in

ay = 10—23.276M3.639 (19)

Although this result shows that ¢, is not proportional to
M?**%! the zero shear viscosity determined from G”
shows (Figure 5)

no = 10—13.75M3.370 (20)

The regression results Eqs. (19) and (20) are not surpris-
ing, because for wide range of molecular weight, the zero
shear viscosity is no longer product of the plateau modulus
and the maximum relaxation time T, . In addition, it is diffi-
cult to determine the plateau modulus. As shown in Lins
experimental data,” the log-log plot of the relaxation modu-
lus versus time, there is a significant slope in the plateau
region. Thus the plateau modulus is not well-defined quan-
tity from experimental data compared with G,” and G,” .

Determination of the parameters of the glassy mode, #,, m,
n, and G., requires data of higher frequency which are not
easily found in literatures. Thus, we consider the parameters
of the glassy mode as adjustable parameters. To reduce the
number of parameters, a critical molecular weight M,. is
chosen as about two times of M,, M. = 32,000 g/mole.

The parameters of curve fitting for the data of Schaus-

Table II. Parameters for Curve Fitting

P 1.93 G., 7% 107 Pa
q 1.25 Gy 9.3X10*Pa
m 1.62 G/’ 32X 10°Pa
n 0.62 Gy” 6.7 10* Pa
& 3965 sec G 3.4 10°Pa
ty 10%sec M, 32,000 g/mole
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Figure. 7. Comparison of the model with the experimental data
of Schausbergers et al.' (a) The storage modulus and (b) the loss
modulus.

bergers et al. also are shown in Table II. Usually, all molec-
ular models mentioned above fitted only 3 polystyrene of
Schausbergers et al., PS4, PSS, and PS6, whose molecular
weights are larger than 10 M,. It is because the plateau
region is well defined for such polymer samples.

Figure 7 shows the curve fitting of the model for the data
of Schausbergers et al. The model agrees well with all sam-
ples of Schausbergers er al. Thus, the model is expected to
be efficient in application to the prediction of MWD from
LVE since it gives good curve fitting for wider range of
molecular weight with simple mathematical form.

Conclusions

We develop a phenomenological model for LVE of linear
monodisperse polymers, which gives good curve fitting for
wider range of molecular weight with simpler mathematical
form than the previous molecular models. Instead of the pla-
teau modulus, the model is based on three scale factors of
modulus, which are well-defined from experimental data.

The LVE of monodisperse polymer can be described by
the sum of two contribution, the reptational and the glassy
modes, whose characteristic time scales are ¢; and f,. It is
expected that the simple phenomenological model is more
efficient in the prediction of MWD from LVE than the
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molecular models.
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