Effect of Polymerization Procedure on Thermal and Mechanical Properties of Polyether Based Thermoplastic Polyurethanes

  • Kim, Seong-Geun (Faculty of Chemical Engineering and Technology, Research Center of Industrial Technology, Chonbuk National University) ;
  • Lee, Dai-Soo (Faculty of Chemical Engineering and Technology, Research Center of Industrial Technology, Chonbuk National University)
  • Published : 2002.12.01

Abstract

Thermoplastic polyurethanes (TPUs) with different hard segment length has been prepared from a fixed molar ratio of poly(tetramethylene ether glycol), 4,4'-diphenylmethane diisocyanate, and 1,4-butanediol by different polymerization procedures. Results reveal that the on-set temperature of endotherms ( $T_{cc}$ ) due to the crystallization of hard segments by cooling the TPUs from melt and the peak temperature of endotherms due to the melting of hard segments ( $T_{mh}$ ) by heating the TPUs increased and levelled off with increasing the hard segment length of TPUs. It has also been observed that soft segment glass transition temperature ( $T_{gs}$ ) of TPU decreased slightly with increasing the hard segment length, which explains less mixing of soft segments and hard segments. In tensile measurement of TPUs, strain hardening is observed with increasing the hard segment length, which is attributed to the strain induced crystallization of soft segments.

Keywords

References

  1. Polyurethane Elastomers, 2nd Edition C. Hepburn
  2. Handbook of Polyurethane M. Szycher
  3. Polyurethane Handbook, 2nd Edition D. Dieterich;H. Hespe G. Oertel(ed.)
  4. J. Appl. Polym. Sci. v.63 D. J. Martin;G. F. Meijs;P. A. Gunatilake;S. J. MaCarthy;G. M. Renwick
  5. Macromolecules v.18 J. A. Miller;S. B. Lin;K. K. S. Hwang;K. S. Wu;P. E. Gibson;S. L. Cooper https://doi.org/10.1021/ma00143a005
  6. J. Appl. Polym. Sci. v.29 S. Abouzahr;G. L. Wilkes https://doi.org/10.1002/app.1984.070290902
  7. Polym. Int'l. v.31 T. O. Ahn;S. C. Choi;H. M. Jeong;K. Cho https://doi.org/10.1002/pi.4990310404
  8. J. Appl. Polym. Sci. v.62 D. J. Martin;G. F. Meijs;G. M. Renwick;S. J. MaCarthy;P. A. Gunatillake https://doi.org/10.1002/(SICI)1097-4628(19961128)62:9<1377::AID-APP7>3.0.CO;2-E
  9. J. Polym. Sci., Part A: Polym. Phys v.21 J. W. C. Van Bogart;P. E. Gibson;S. L. Cooper https://doi.org/10.1002/pol.1983.180210106
  10. J. Polym. Sci., Part A: Polym. Phys. v.21 J. T. Koberstein;R. S. Stein https://doi.org/10.1002/pol.1983.180210814
  11. J. Polym. Sci., Part A: Polym. Phys. v.23 L. M. Leung;J. T. Koberstein https://doi.org/10.1002/pol.1985.180230912
  12. Polymer v.22 J. W. C. Van Bogart;D. A. Bluemke;S. L. Cooper https://doi.org/10.1016/0032-3861(81)90250-0
  13. J. Polym. Sci., Polym. Chem. Ed. v.33 Y. C. L. Edmond;T. Quinn;P. L. Valint https://doi.org/10.1002/pola.1995.080331103
  14. Macromolecules v.25 J. T. Koberstein;A. F. Galambos https://doi.org/10.1021/ma00047a010
  15. Macromol. Symp. v.77 C. D. Eisenbach;T. Heinemann;A. Ribbe;E. Stedler
  16. Korea Polym. J. v.8 D. H. Choi;J. H. Kim;K. J. Cho