Synthesis and Characterization of Fluorinated Poly (maleimide-co-methacrylate)s for Optical Waveguiding Materials

광도파로용 Fluorinated Poly(maleimide-co-methacrylate)s의 합성과 특성

  • 김원래 (한국과학기술연구원 정보재료소자연구센터) ;
  • 한학수 (연세대학교 화학공학과) ;
  • 한관수 (한국과학기술연구원 정보재료소자연구센터) ;
  • 장웅상 (한국과학기술연구원 정보재료소자연구센터) ;
  • 이철주 (한국과학기술연구원 정보재료소자연구센터)
  • Published : 2002.03.01

Abstract

The objective of this study is to obtain thermally stable and low optical loss polymers for optical waveguiding materials. The crosslinkable poly (maleimide-co-methacrylate)s were synthesized using a pentafluorophenylmaleimide (an optical loss reducer), two methacrylate derivatives (refractive index controllers), and a glycidylmethacrylate (a crosslinker). These copolymers exhibited good thermal stability and could be thermally crosslinked by heat treatment. The refractive indexes of the copolymers could be precisely controlled by the variation of comonomer feed ratio, which was in the range of 1.45 ~ 1.49. These copolymers had very low birefringence of $6{ imes}10^{-4}$ ~ $1{ imes}10^{-4}$. These copolymers were crosslinked by contact printing and then developed by wet etching to obtain high quality waveguide pattern.

본 연구는 내열성, 저광학손실 광도파로용 고분자재료를 합성하고 그 물성을 조사한 것이다. 열안정성을 높이고 광학손실을 줄이기 위한 pentafluorophenylmaleimide와 복굴절률을 낮추기 위한 두가지 methacrylate 유도체와 가교제 역할을 하는 glycidylmethacrylate를 삼원 공중합하여 광가교가 가능한 poly(maleimide-co-methacrylate)를 합성하였다. 합성된 고분자들은 높은 열안정성을 나타내었고, 열처리에 의해서 가교가 됨을 확인하였다. 고분자의 굴절율은 공중합 비율에 의해서 조절가능하였고, 1.45~l.49 범위의 고분자가 합성되었다. 복굴절은$6{ imes}10^{-4}$ ~ $1{ imes}10^{-4}$ 범위의 낮은 값을 나타내었다. 이 고분자와 광개시제를 사용하여 접촉 인쇄 방식에 의한 노광과 습식 현상을 통해 깨끗한 광도파로 패턴을 얻을 수 있었다.

Keywords

References

  1. IEEE J. Selected Topics in Quant. Electronics v.2 no.2 M. Renaud;M. Bachmann;M. Erman https://doi.org/10.1109/2944.577378
  2. IEEE J. Selected Topics in Quant. Electronics v.2 no.2 E. Pennings;G. D. Khoe;M. K. Smit;T. Staring https://doi.org/10.1109/2944.577349
  3. Appl. Phys. Lett. v.73 no.18 M. C. Oh;H. J. Lee;M. H. Lee;J. H. Ahn;S. G. Han;H. G. Kim https://doi.org/10.1063/1.122527
  4. IEEE Proc.-Optoelectron. v.143 no.5 Y. P. Li;C. H. Henry https://doi.org/10.1049/ip-opt:19960840
  5. IEEE J. Lightwave Technol. v.6 no.6 N. Tacato;K. Jinguji;M. Yasu;H. Toba;M. Kawachi https://doi.org/10.1109/50.4091
  6. Electron. Lett. v.27 no.15 S. Imamura;R. Yoshimura;T. Izawa https://doi.org/10.1049/el:19910845
  7. IEEE J. Lightwave Technology v.16 no.6 R. Yoshimura;M. Hikita;S. Tomsru;S. Imamura https://doi.org/10.1109/50.681460
  8. Appl. Opt. v.34 no.6 M. Kagami;H. Ito;T. Ichigawa;S. Kato;M. Matsuda;N. Takahashi https://doi.org/10.1364/AO.34.001041
  9. Electronics Lett. v.30 no.12 M. Usui;S. Imamura;S. Sugawara;S. Hayashida;H. Sato;M. Hikita;T. Izawa https://doi.org/10.1049/el:19940677
  10. J. Lightwave Tech. v.14 no.10 M. Usui;M. Hikita;T. Watanabe;M. Amano;S. Sugawara;S. Hayashida;S. Imamura https://doi.org/10.1109/50.541226
  11. Jpn. J. Appl. Phys. v.38 K. S. Han;D. B. Kim;W. H. Jang;T. H. Rhee https://doi.org/10.1143/JJAP.38.1249
  12. Applied Optics v.37 no.6 J. Kobayashi;T. Matsuura;S. Sasaki;T. Maruno https://doi.org/10.1364/AO.37.001032
  13. Chemtech. S. Ando;T. Matsuura;S. Sasaki
  14. Electronics Lett. v.33 no.6 G. Fischbeck;R. Moosburger;C. Kostrzewa;A. Achen;K. Petermann https://doi.org/10.1049/el:19970307
  15. J. Polym. Sci.:Part A : Polym. Chem. v.36 H. J. Lee;E. M. Lee;M. H. Lee;M. C. Oh;J. H. Ahn;S. G. Han;H. G. Kim https://doi.org/10.1002/(SICI)1099-0518(19981130)36:16<2881::AID-POLA6>3.0.CO;2-#
  16. Polymer Bulletin v.41 K. S. Han;D. H. Suh;T. H. Lee https://doi.org/10.1007/s002890050387
  17. React. Func. Polym. v.40 no.2 K. H. Park;J. T. Lim;S. Song;M. K. Kwak;C. J. Lee;N. Kim https://doi.org/10.1016/S1381-5148(98)00022-4
  18. React. Func. Polym. v.40 no.1 K. H. Park;M. K. Kwak;Y. S. Lee;W. S. Jahng;C. J. Lee;N. Kim https://doi.org/10.1016/S1381-5148(98)00015-7