Effect of Hydrophilic Polymers on the Release of BCNU from BCNU-loaded PLGA Wafer

친수성 고분자가 BCNU 함유 PLGA 웨이퍼로부터 BCNU의 방출에 미치는 효과

  • 안태군 (전북대학교 유기신물질공학과) ;
  • 강희정 (전북대학교 유기신물질공학과) ;
  • 문대식 (전북대학교 유기신물질공학과) ;
  • 이진수 (전북대학교 유기신물질공학과) ;
  • 성하수 (한국화학연구원 생체고분자연구실)
  • Published : 2002.09.01

Abstract

1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) is one of the effective chemotherapeutic agents which has been used clinically for treating malignant glioma. Poly(D,L-lactide-co-glycolide) (PLGA, molecular weight: 20000 g/mole. mole ratio of lactide to glycolide 75 : 15) is a well known biodegradable polymer used as a drug carrier for drug delivery system. In this study, we investigated the BCNU release behaviour of BCNU-loaded PLGA wafers containing poly (N-vinylpyrrolidone) (PVP) or polyethyleneoxide (PEO) and the effect of hydrophilic polymers incoporated in the wafers. BCNU-loaded PLGA microparticles with or without hydrophilic polymers were prepared by a spray drying method and fabricated into wafers by direct compression. Encapsulation efficiency of BCNU-loaded PLGA microparticles containing PVP and PEO was 85 ∼ 97% and crystallinity of BCNU encapsulated in PLGA decreased significantly initial release amount and release rate of BCNU increased with the increasing PVP or PEO amount. Morphological change and mass loss of wafers during the release test were confirmed that hydration and degradation of PLGA would be facilitated with an increase of hydrophilic polymers.

1, 3-bis[2-chloroethyl]-1-nitrosourea (BCNU, carmustine)는 악성 뇌종양 치료를 위하여 화학요법적 임상에서 널리 사용되는 약물이다. 또한, poly(D,L-lactide-co-glycolide) (PLGA, 분자량: 20000 g/mole, 락타이드와 글리콜라이드 몰비 75 : 25)는 약물전달시스템을 위한 약물 전달체로써 사용되어지는 잘 알려진 생분해성 초분자이다. 본 연구에서 폴리비닐피롤리돈 (PVP) 또는 폴리에틸렌옥사이드 (PEO)를 함유하고 있는 BCNU 함유 PLGA 웨이퍼들의 BCNU 방출거동과 웨이퍼에 포접된 친수성 고분자의 효과를 조사하였다. 친수성 고분자의 첨가 또는 첨가 없이 BCNU 함유 PLGA 미분말은 분사건조법에 의해 제조하였으며, 제조된 BCNU 함유 PLGA 미분말은 압축성 형법에 의해 웨이퍼형태고 제조하였다. 친수성 고분자가 첨가된 BCNU 함유 PLGA 미분말의 포접율은 85∼97%였고, PLGA에 포접된 BCNU의 결정성은 현저히 감소하였다. 약물 방출 경향과 분해 거동에서 친수성 고분자의 함량이 증가할수록 BCNU의 초기방출량과 방출속도는 증가됨을 확인하였다. 방출시험 기간동안 웨이퍼의 형태변화와 무게변화를 측정함으로써 친수성 고분자의 함량이 증가할수록 PLGA의 수차와 분해가 촉진됨을 관찰하였다.

Keywords

References

  1. Biomater.Res. v.4 D.S. Moon;G. Khang;H.S. Seong;J.M. Rhee;J.S. Lee;H.B. Lee
  2. N.Eng.J.Med. v.324 P.M. Black https://doi.org/10.1056/NEJM199105233242105
  3. Neurosurgery v.23 R.E. Harbaugh;R.L. Sanders;R.F. Reeder https://doi.org/10.1227/00006123-198812000-00001
  4. J.Neurosurg. v.83 R.D. Penn;M.M. York;J.A. Paice https://doi.org/10.3171/jns.1995.83.2.0215
  5. Brain Res. v.674 J. Kreuter;R.N. Alyautdin;D.A. Kharkevich;A.A. Ivanov. https://doi.org/10.1016/0006-8993(95)00023-J
  6. Adv.Drug Deliv.Rev. v.10 U. Bickel;T. Yoshikawa;W.M. Pardridge https://doi.org/10.1016/0169-409X(93)90048-9
  7. Acta Neurol.Scand. v.126 O. Lindvall;A. Bjorklund
  8. Neuroscience v.23 F.H. Gage;J.A. Wolff;M.B. Rosenberg;L. Xu;J.K. Yee;C. Shults;T. Friedmann https://doi.org/10.1016/0306-4522(87)90159-X
  9. Cancer Res. v.53 R.J. Tamargo;J.S. Myseros;J.I. Epstein;M.B. Jang;M. Chasin;H. Brem
  10. Cancer Res. v.54 K.A. Walter;M.A. Cahan;A. Gur;B. Tyler;J. Hilton;O.M. Colvin;P.C. Burger;A. Domb;H. Brem
  11. Neurosurgery v.39 K.O. Lillehei;Q. Kong;S.J. Withrow;B. Kleinschmidts https://doi.org/10.1097/00006123-199612000-00023
  12. Neurosurgery v.39 P. Minie;M. Boisdron-Cller;A. Croue;G. Guy;J.P. Benoit https://doi.org/10.1097/00006123-199607000-00023
  13. J.Neurosurg. v.74 H. Brem;M.S. Mahaley;N.A. Vick;K.L. Black;S.C. Schold;T.W. Ellier;J.W. Cozzens;J.N. Kenealy https://doi.org/10.3171/jns.1991.74.3.0441
  14. J.Neurooncol. v.26 H. Brem;M.G. Ewend;S. Piantadosi;J. Greenhoot;P.C. Burger;M. Sisti https://doi.org/10.1007/BF01060217
  15. Polymer Sci.Tech. v.12 G. Khang;J.M. Rhee;J.S. Lee;H.B. Lee
  16. Neurosurgery v.37 K.A. Walter;R.J. Tarmargo;A. Olivi;P.C. Burger;H. Brem https://doi.org/10.1227/00006123-199512000-00013
  17. J.Biomed.Mater.Res. v.20 K.W. Leong;P.D'. Amore;M. Marletta;R. Langer https://doi.org/10.1002/jbm.820200106
  18. Int.J.Pharm. v.160 H. Akbari;A. D'Emanuele;D. Attwood https://doi.org/10.1016/S0378-5173(97)00298-6
  19. Pharm.Res. v.16 A.J. Domb;Z.H. Israel;O. Elmalak;D. Teomim;A. Bentolia https://doi.org/10.1023/A:1011995728760
  20. Macromol.Chem.Symp. v.14 H.S. Seong;D.S. Moon;G. Khang;H.B. Lee
  21. Polymer(Korea) v.26 H.S. Seong;D.S. Moon;G. Khang;H.B. Lee
  22. Biomedical Polymer G. Khang;H.B. Lee
  23. Korea Polym.J. v.7 J.C. Cho;G. Khang;J.M. Rhee;Y.S. Kim;J.S. Lee;H.B. Lee
  24. Bio-Med.Mater.Eng. v.9 G.Khang;J.C.Cho;J.W.Lee;J.M.Rhee;H.B.Lee
  25. Polymer Preprints v.40 H.B. Lee;G. Khang;J.C. Cho;J.M. Rhee;J.S. Lee
  26. Korea Polym.J. v.8 G. Khang;J.H. Lee;J.W. Lee;J.C. Cho;H.B. Lee
  27. Polymer(Korea) v.24 J.C. Cho;G. Khang;H.S. Choi;J.M. Rhee;H.B. Lee
  28. Biomater.Res. v.4 W.I. Son;D.I. Yun;G. Khang;B.S. Kim;H.B. Lee
  29. Biomater.Res. v.4 J.C. Cho;G. Khang;J.M. Rhee;Y.S. Kim;J.S. Lee;H.B. Lee
  30. Polymer(Korea) v.25 S.A. Seo;H.S. Choi;D. Lee;J.M. Rhee;H.B. Lee
  31. Biomater.Res. v.5 S.A. Seo;H.S. Choi;J.C. Cho;G. Khang;J.M. Rhee;H.B. Lee
  32. Int.J.Pharm. v.234 H.S. Chi;G. Khang;H.C. Shin;J.M. Rhee;H.B. Lee https://doi.org/10.1016/S0378-5173(01)00968-1
  33. Int.J.Pharm. v.239 S.A. Seo;H.S. Choi;J.C. Cho;G. Khang;J.M. Rhee;H.B. Lee https://doi.org/10.1016/S0378-5173(02)00074-1
  34. ACS Symp.Series 752 Fentanyl-loaded PLGA Microspheres for Local Anesthesia ; Controlled Drug Delivery;Designing Technologies for the Future H.B. Lee;G. Khang;J.C. Cho;J.M. Rhee;J.S. Lee;K. Park(ed.);R.J. Mrnsy(ed.)
  35. Drug.Dev.Ind.Pharm. v.22 M. Iwata;H. Ueda https://doi.org/10.3109/03639049609065953
  36. Chin.Pharm.J. v.30 W.G. Lu;Y. Zhang;Q.M. Xiong;Y.C. Bao;Q.H. Chen
  37. Indian Drugs v.32 K.P. Chowdary;K.V. Ramesh
  38. U.S.Patent 5,273,758 A.E. Royce
  39. J.Pharm.Sci. v.84 C.J. Kim https://doi.org/10.1002/jps.2600840308
  40. Drug.Dev.Ind.Pharm. v.24 C.J. Kim https://doi.org/10.3109/03639049809082366
  41. J.Pharm.Sci. v.55 T.L. Loo;R.L. Dion;R.L. Dixon;D.P. Rall https://doi.org/10.1002/jps.2600550509
  42. Acta Pharm.Scand. v.23 K. Fredrikson;P. Lundgren
  43. Eur.J.Pharm.Biopharm. v.45 T. Painbeni;M.C. Venier-Juliene;J.P. Benoit https://doi.org/10.1016/S0939-6411(97)00120-3
  44. Int.J.Pharm. v.73 L.S.C. Wan;P.W.S. Heng;L.F. Wong https://doi.org/10.1016/0378-5173(91)90033-K
  45. Pharm.Res. v.5 R.S. Harland;A. Gazzaniga;M.E. Sangalli;P. Colombo;N.A. Peppas
  46. Biomaterials v.14 A. Apicella;B. Capello;M.A. Del Nobile;M.I. La Rotonda;G. Mensitieri;L. Nicolas https://doi.org/10.1016/0142-9612(93)90215-N