Dielectric Characterization of Unsaturated Polyester Curing

불포화 폴리에스터의 경화에 따른 유전특성 연구

  • 오경성 (성균관대학교 고분자공학과) ;
  • 김홍경 (충주대학교 고분자공학과) ;
  • 김명덕 (국립과학수사연구소) ;
  • 남재도 (성균관대학교 고분자공학과)
  • Published : 2002.11.01

Abstract

The thermal and dielectric properties of unsaturated polyester resin system during cure were analyzed under Isothermal conditions. Both $varepsilon$′ and $varepsilon$" decreased and dipole relaxation was observed under isothermal conditions during cure. The ionic conductivity decreased linearly with the conversion according to the Kienle-Rate equation (ln($varepsilon$"$_{ionic}$we$_{0}$)=C$_{r}$$alpha$+C$_{0}$) up to $alpha$=0.15, after which it aparted from the relationship due to the entanglement of polymer chains. The effect of ionic conductivity was revealed to be larger than that of dipole motion during the whole cure through the electrical modulus analysis. Although dielectric motion was analyzed with Debye model, it was observed only at a narrow time region of middle stage of cure. In order to estimate the dielectric properties during the whole cure, the Havriliak-Negami model was considered and modified with the strong effect of ionic conductivity. The changes of $varepsilon$′ and $varepsilon$" were well estimated with this modified Havriliak-Negami model.

Keywords

References

  1. Thermal Characterization of Polymeric Materials R. B. Prime;E. A. Turi(ed.)
  2. Plastics Materials(5th ed.) J. A. Brydson
  3. J. Polym. Sci. v.8 K. Horie;I. Mita;H. Kambe https://doi.org/10.1002/pol.1970.150081010
  4. Principles of Polymerization Engineering J. A. Bisenberger;D. H. Sevastian
  5. SPE Annu Tech Conf., 38th Prep. J. F. Stevenson
  6. Polym. Eng. Sci. v.26 J. W. Lane;J. C. Seferis;M. A. Bachmann https://doi.org/10.1002/pen.760260504
  7. Polym. Eng. Sci. v.26 W. W. Bidstrup;N. F. Sheppard;S. D. Senturia https://doi.org/10.1002/pen.760260506
  8. Polym. Eng. Sci. v.26 Z. N. Sanjana https://doi.org/10.1002/pen.760260509
  9. Polym. Eng. Sci. v.34 G. M. Maistros;C. B. Bucknall https://doi.org/10.1002/pen.760342002
  10. Polym. Eng. Sci. v.35 S. Radhakrishnan;D. Hayward;A. J. Mackinnon;R. A. Pethrick https://doi.org/10.1002/pen.760350211
  11. J. Polym. Sci., Polym. Phys. v.28 W. M. Sanford;R. L. McCullough https://doi.org/10.1002/polb.1990.090280701
  12. SAMPE J. v.27 J. M. Kenny;A. Trivasano;L. A. Berglund
  13. SAMPE J. v.25 P. R. Ciriscioli;G. S. Springer
  14. Trans. Electrochem. Soc. v.65 R. H. Kienle;H. H. Race https://doi.org/10.1149/1.3498061
  15. Kolloid, Z. v.95 E. Manegold;W. Petzoldt https://doi.org/10.1007/BF01520685
  16. Adv. Polym. Sci. v.80 S. D. Senturia;N. F. Sheppard
  17. J. Polym. Sci., Polym. Phys. v.28 M. B. M. Mangion;G. P. Johari https://doi.org/10.1002/polb.1990.090280916
  18. J. Am. Chem. Soc. v.73 J. F. Johnson;R. H. Cole https://doi.org/10.1021/ja01154a012
  19. J. Polym. Sci. v.10 V. Adamec https://doi.org/10.1002/pol.1972.150100501
  20. Polar Molecules P. Debye
  21. J. Chem. Phys. v.9 K. S. Cole;R. H. Cole https://doi.org/10.1063/1.1750906
  22. J. Chem. Phys. v.18 D. W. Davidson;R. H. Cole
  23. Trans. Farad. Soc. v.66 G. Williams;D. C. Watts https://doi.org/10.1039/tf9706600080
  24. Trans. Farad. Soc. v.67 G. Williams;D. C. Watts;S. B. Dev;A. M. North https://doi.org/10.1039/tf9716701323
  25. J. Polym. Sci., Polym. Chem. v.14 S. Havriliak, Jr.;S. Negami
  26. Polymer v.8 S. Havriliak, Jr.;S. Negami https://doi.org/10.1016/0032-3861(67)90021-3
  27. J. Polym. Sci., Polym. Phys. Ed. v.35 Y. M. Yun;Y. K. Lee;J. D. Nam https://doi.org/10.1002/(SICI)1099-0488(19971115)35:15<2447::AID-POLB7>3.0.CO;2-Q