DOI QR코드

DOI QR Code

Characteristics of Halophosphate Phosphor for Long-wavelength UV Prepared by Spray Pyrolysis

분무열분해법에 의해 합성된 장파장 자외선용 할로포스페이트계 형광체의 특성

  • Sohn, Jong-Rak (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang, Yun-Chan (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Hee-Dong (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Yoon, Soon-Gil (Department of Materials Engineering, Chungnam National University)
  • 손종락 (한국화학연구원 화학소재부, 충남대학교 재료공학과) ;
  • 강윤찬 (한국화학연구원 화학소재부) ;
  • 박희동 (한국화학연구원 화학소재부) ;
  • 윤순길 (충남대학교 재료공학과)
  • Published : 2002.07.01

Abstract

Blue-emitting $Sr_{10}$($PO$)$_{6}$ $Cl_2$:$Eu^{2+}$ and $_{(Sr,Mg) }$ 10/($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ phosphor particles for application of long-wavelength UV LED were prepared by ultrasonic spray pyrolysis. The luminescence characteristics under long- wave-length ultraviolet of the $Sr_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ and (Sr,Mg)$_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$^Eu{2+}$ phosphor particles prepared by the spray pyrolysis were compared with that of the commercial product. The PL intensity of the $Sr_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ particles prepared by the spray pyrolysis was lower than that of the commercial $Sr_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ particles because prepared $Sr_{10}$ ($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ phosphor particles had porous structure and hollow morphology. However, the PL intensity of the (Sr,Mg)$_{10}$($PO_4$)$_{6}$ $Cl_2$:$Eu^{2+}$ phosphor particles prepared by the spray pyrolysis was 8% higher than that of the commercial one. The high brightness of $(Sr,Mg)_{10}$ ($PO_4$)$_{6}$ $Cl_2$:Eu$^{2+}$ phosphor particles prepared by spray pyrolysis is due to the dense structure and high crystallinity of particles. The TEX>$(Sr,Mg)<_{10}$ ($PO_4$)$_{6}$ /$Cl_2$:$Eu^{ 2+}$ phosphor particles had main emission peak t 448 nm under long- wavelength ultraviolet.

Keywords

References

  1. P. Schlotter, J. Baur, Ch. Hielscher, M. kunzer, H. Obloh, R. Schmidt, and J. Schneider, Mater. Sci. Eng., 859, 390 (1999) https://doi.org/10.1016/S0921-5107(98)00352-3
  2. Y. Zhou, R. Shu, X. Zhang, J. Shi, and Z. Han, Mater. Sci. Eng., 868, 48 (1999) https://doi.org/10.1016/S0921-5107(99)00334-7
  3. J.M. Flaherty, J. Electrochem. Soc., 128[1], 131 (1981) https://doi.org/10.1149/1.2127353
  4. R. Dafinova and V. Pelova, J. Mater. Sci. Lett., 15[15], 1367 (1996) https://doi.org/10.1007/BF00240810
  5. M. Sato, T. Tanaka, and M. Ohta, J. Electrochem. Soc., 141 [7], 1851 (1994) https://doi.org/10.1149/1.2055016
  6. J.H. Lee, Y.C. Kang, S.B. Park, and H.D. Park, Jpn, J. Appl. Phys., 40, 3222 (2001) https://doi.org/10.1143/JJAP.40.3222
  7. V.X. Quang, N.M. Son, P.T. Yen, T.H. Mai, B. Huttl, U. Troppenz, and R. H. Mauch, Phys, Stat. Sot. (A), 156, 209 (1996) https://doi.org/10.1002/pssa.2211560125
  8. R. Dafinova, K. Papazova, and A. Bojinova, J. Mater. Sci. Lett., 16 [24),2047 (1997) https://doi.org/10.1023/A:1018512801348
  9. S.J. Dhoble, J. Phys. D: Appl. Phys., 33, 158 (2000) https://doi.org/10.1088/0022-3727/33/2/310
  10. Y.C. Kang, H.S. Roh, and S.B. Park, Adv. Mater., 12, 451 (2000) https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<451::AID-ADMA451>3.0.CO;2-S
  11. Y.C. Kang, H.D. Park, and S.B. Park, Jpn. J. Appl. Phys., 39, L1305 (2000) https://doi.org/10.1143/JJAP.39.L1305
  12. Y.C. Kang and S.B. Park, Jpn. J. Appl, Phys., 38, L1541 (1999) https://doi.org/10.1143/JJAP.38.L1541

Cited by

  1. Cl Activated by Divalent Europium vol.23, pp.4, 2016, https://doi.org/10.6117/kmeps.2016.23.4.063