DOI QR코드

DOI QR Code

Fabrication Process of Al2O3/Cu Nanocomposite by Dispersion and Reduction of Cu Oxide

CU Oxide 분산 및 환원에 의한 Al2O3/Cu 나노복합재료의 제조공정

  • 고세진 (한양대학교 재료공학과, CPRC) ;
  • 민경호 (한양대학교 재료공학과, CPRC) ;
  • 강계명 (서울산업대학교 신소재공학과) ;
  • 김영도 (한양대학교 재료공학과, CPRC) ;
  • 문인형 (한양대학교 재료공학과, CPRC)
  • Published : 2002.08.01

Abstract

It was investigated that $Al_2$$O_3$/Cu nanocomposite powder could be optimally prepared by dispersion and reduction of Cu oxide, and suitably consolidated by employing pulse electric current sintering (PECS) process. $\alpha$-$Al_2$$O_3$ and CuO powders were used as elemental powders. In order to obtain $Al_2$O$_3$ embedded by finely and homogeneously dispersed CuO particles, the elemental powders were high energy ball milled at the rotating speed of 900 rpm, with the milling time varying up to 10 h. The milled powders were heat treated at $350^{\circ}C$ in H$_2$ atmosphere for 30 min to reduce CuO into Cu. The reduced powders were subsequently sintered by employing PECS process. The composites sintered at $1250^{\circ}C$ for 5 min showed the relative density of above 98%. The fracture toughness of the $Al_2$$O_3$/Cu nanocomposite was as high as 4.9MPa.$m^{1}$2//, being 1.3 times the value of pure $Al_2$$O_3$ sintered under the same condition.

Keywords

References

  1. M. Sternitzke, M. Knechtel, M. Hoffman, E. Broszeit and J. Rodel : J. Am. Ceram. Soc., 79(1), 121 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb07889.x
  2. T. Sekino, T. Nakajima, S. Ueda, K. Niihara : J.Am.Ceram.Soc., 80 (5), 1139 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02956.x
  3. T. Sekino and K. Niihara : Nanostruct. Mater., 6(5-8), 663 (1995) https://doi.org/10.1016/0965-9773(95)00145-X
  4. S.-T. Oh, T. Sekino and K. Niihara : Nanostruct. Mater., 10(2), 267 (1998) https://doi.org/10.1016/S0965-9773(98)00064-6
  5. T. Sekino and K. Niihara : J. Mater. Sci., 32(15), 3943 (1997) https://doi.org/10.1023/A:1018668900343
  6. J.S. Benjamin : Metall. Trans., 1, 2943 (1970)
  7. S.-T. Oh, T. Sekino and K. Niihara : J. Europ. Ceram. Soc., 18(1), 31 (1998) https://doi.org/10.1016/S0955-2219(97)00099-X
  8. S.J. Bennison and M.P. Harmer : J. Am. Ceram. Soc., 68, C-22 (1985) https://doi.org/10.1111/j.1151-2916.1985.tb15259.x
  9. S.-T. Oh, J.S. Lee, K. Niihara : J. Kor. Pow. Metall. Ins., 7(4), 213 (2000)
  10. G.R. Anstis, P. Chantikul, B.R. Lawn and D.B. Marshall : J. Am. Ceram. Soc., 64, 533 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  11. M. Kitayama and J.A. Pask: J. Am. Ceram. Soc., 79, 2003 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08930.x
  12. G.K. Williamson and W.H. Hall : Acta Metall., 1, 22 (1953) https://doi.org/10.1016/0001-6160(53)90006-6
  13. K.H. Min, D.H. Hong, D.G. Kim, Y.D. Kim, I.-H. Moon : J. Kor. Pow. Metall. Ins., 7 (3), 149 (2000)
  14. G. Li, A. Jiang and L. Zhang : J. Mater. Sci. Lett., 15, 1713 (1996) https://doi.org/10.1007/BF00636204
  15. J. Mater. Sci. Lett. v.15 G.Li;A.Jiang;L.Zhang https://doi.org/10.1007/BF00636204