DOI QR코드

DOI QR Code

Properties of Ag Thin Films Deposited in Oxygen Atmosphere Using in- line Magnetron Sputter System

In-line 마그네트론 스퍼터 장치를 사용하여 산소 분위기에서 제작한 Ag 박막의 특성

  • 구대영 (한국항공대학교 항공재료공학과) ;
  • 김원목 (한국과학기술연구원 재료연구부) ;
  • 조상무 (아이티엠(주)) ;
  • 황만수 (아이티엠(주)) ;
  • 이인규 (한국항공대학교 항공재료공학과) ;
  • 정병기 (한국과학기술연구원 재료연구부) ;
  • 이택성 (한국과학기술연구원 재료연구부) ;
  • 이경석 (한국과학기술연구원 재료연구부) ;
  • 조성훈 (아주대학교 분자과학기술과)
  • Published : 2002.08.01

Abstract

A study was made to examine the electrical, compositional, structural and morphological properties of Ag thin films deposited by DC magnetron sputtering in $O_2$ atmosphere with deposition temperature from room temperature to 15$0^{\circ}C$ using in-line sputter system. The Ag films deposited at temperature above $100^{\circ}C$ in oxygen atmosphere gave a similar specific resistivity to and even lower oxygen content than those deposited using pure Ar sputter gas The Ag films deposited with pure Ar gas was mainly composed of crystallites with [111] preferred orientation, while, for those deposited in oxygen atmosphere, more than 50% of the volume was composed of crystallites with [100] orientation. The difference in the micro structure did not cause any difference in the specific resistivity of Ag films. The results showed that the transparent conducting oxide films and the Ag films could be processed sequentially in the same deposition chamber with careful control of deposition temperature, which might result in a cost reduction for constructing the large scale in-line deposition system.

Keywords

References

  1. T. Minami, MRS Bulletin, 38, Aug. (2000)
  2. T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. Part 2: Lett., 25, L776 (1986) https://doi.org/10.1143/JJAP.25.L776
  3. J. Hu, and R.G. Gordon, Sol. Cells, 30, 437 (1991) https://doi.org/10.1016/0379-6787(91)90076-2
  4. M. Bender, W. Seeling, C. Daube, H. Frankenberger, B. Ockor, and J. Stollenwerk, Thin Solid Films, 326, 67 (1998) https://doi.org/10.1016/S0040-6090(98)00520-3
  5. A. KI ppel, B. Meyer, and J. Trube, Thin Solid Films, 392, 311 (2001) https://doi.org/10.1016/S0040-6090(01)01049-5
  6. C. Charton, M. Fahland, Surfaces & Coatings Tech., 142, 175 (2001) https://doi.org/10.1016/S0257-8972(01)01148-3
  7. M. Scalora, M.J. Bloomer, A.S. Pethel, J.P. Dowling, C.M. Brown, and A.S. Manka, J. Appl. Phys., 83(5), 2377 (1998) https://doi.org/10.1063/1.366996
  8. M.J. Bloomer and M. Scalora, Appl. Phys. Lett., 72(14), 1676 (1998) https://doi.org/10.1063/1.121150
  9. E. Ando, M. Miyazaki, Thin Solid Films, 351, 308 (1999) https://doi.org/10.1016/S0040-6090(98)01796-9
  10. E. Ando, S. Suzuki, N. Aomine, M. Miyazaki, and M. Tada, Vacuum, 59, 792 (2000) https://doi.org/10.1016/S0042-207X(00)00349-3
  11. E. Ando, M. Miyazaki, Thin Solid Films, 392, 289 (2001) https://doi.org/10.1016/S0040-6090(01)01045-8
  12. Y. Xiong, H. Wu, Y. Guo, Y. Sun, D. Yang, and D. Da, Thin Solid Films, 375, 300 (2000) https://doi.org/10.1016/S0040-6090(00)01253-0
  13. CRC handbook of Chemistry and Physics, 61st Ed., CRC Press Inc., Boca Raton,Fl., USA, 1980, p.B-145
  14. L. Men, J. Tominaga, H. Fuji, and N. Atoda, Jpn. J. Appl. Phys., 39(5A), 2639 (2000) https://doi.org/10.1143/JJAP.39.2639
  15. L.H. Schwartz, and J.B. Cohen, Diffraction from Materials, 2nd Ed., p224, Springer-Verlag, Berlin, (1987)
  16. J.S. Ozcomert, W.W. Pai, N.C. Bartelt, and J.E. Reutt Robery, Phys. Rev. Lett, 72, 258 (1994) https://doi.org/10.1103/PhysRevLett.72.258
  17. A.R. Layson, and P.A. Thiel, Surf. Sci., 472, L151 (2001) https://doi.org/10.1016/S0039-6028(00)00968-7
  18. G.T. Duys and T. Farrel, Electrical Resistivity Handbook, p.535, Perter Peregrinus Ltd., London, UK, (1992)

Cited by

  1. Improvement in the setup of the inline sputter system and the ITO sputtering process by measuring and controlling the base vacuum level vol.9, pp.4, 2008, https://doi.org/10.1080/15980316.2008.9652065