DOI QR코드

DOI QR Code

침전-증발법에 의해 제조된 리튬이온 2차 전지용 LiMn2O4 양극재료의 특성

Characteristics of LiMn2O4 Cathode Material Prepared by Precipitation-Evaporation Method for Li-ion Secondary Battery

  • Kim, Guk-Tae (Division of Materials Science Engineering, Gyeongsang National University) ;
  • Yoon, Duck-Ki (Division of Materials Science Engineering, Gyeongsang National University) ;
  • Shim, Young-Jae (Division of Materials Science Engineering, Gyeongsang National University)
  • 발행 : 2002.09.01

초록

New wet chemical method so called precipitation-evaporation method was suggested for preparing spinel structure lithium manganese oxide ($LiMn_2$$O_4$) for Li ion secondary battery. Using precipitation-evaporation method, $LiMn_2$$O_4$ cathode materials suitable for Li ion secondary batteries can be synthesized. Single spinel phase $LiMn_2$$O_4$ powder was synthesized at lower temperature compared to that of prepared by solid-state method. $LiMn_2$$O_4$ powder prepared by precipitation-evaporation method showed uniform, small size and well defined crystallinity particles. Li ion secondary battery using $LiMn_2$$O_4$ as cathode materials prepared by precipitation-evaporation method and calcined at $800^{\circ}C$ showed discharge capacity of 106.03mAh/g and discharge capacity of 95.60mAh/g at 10th cycle. Although Li ion secondary battery showed somewhat smaller initial capacity but good cyclic ability. It is suggested that electro-chemical properties can be improved by controlling particle characteristics by particle morphology modification during calcination and optimizing Li ion secondary battery assembly conditions.

키워드

참고문헌

  1. H. Huang, P.G. Bruce, J. Power Sources., 54, 52 (1995) https://doi.org/10.1016/0378-7753(94)02039-6
  2. Y. Xia, H. Takeshige, H. Noguchi and M. Yoshio, J. Power Sources., 56, 61 (1995) https://doi.org/10.1016/0378-7753(95)80009-6
  3. J.M. Tarascon, F. Coowar, G. Amatuci, F.K. Shokoohi and D.G. Guyornard, J. Power Sources., 54, 103 (1995) https://doi.org/10.1016/0378-7753(94)02048-8
  4. S. Bach, J. Farcy, J.P. Pereira-Ramos, Solid State Ionics., 110,193 (1998) https://doi.org/10.1016/S0167-2738(98)00125-8
  5. Y.S. Lee, Y.K. Sun and K.S. Nahrn, Solid State Ionics., 09, 285 (1998) https://doi.org/10.1016/S0167-2738(98)00085-X
  6. A.R. Naghash, J.Y. Lee, J. Power Sources., 85, 284 (2000) https://doi.org/10.1016/S0378-7753(99)00347-X
  7. Y.S. Han, H.G. Kim, J. Power Sources., 88,161 (2000) https://doi.org/10.1016/S0378-7753(99)00364-X
  8. R. Chen, T. Chirayil, P. Zavalij and M.S. Whittingam, Solid State Ionics., 86-88, 1 (1996) https://doi.org/10.1016/0167-2738(96)00086-0
  9. K.T. Hwang, W.S. Urn, H.S. Lee, J.K. Song and K.W. Chung, J. Power Sources., 74, 169 (1998) https://doi.org/10.1016/S0378-7753(98)00050-0
  10. Y. Xia, M. Yoshio, J. Power Sources., 57, 125 (1995) https://doi.org/10.1016/0378-7753(95)02267-8
  11. W. Yang, G. Zhang, J. Xie, L. Yang and Q. Liu, J. Power Sources., 81-82,412 (1999) https://doi.org/10.1016/S0378-7753(99)00219-0
  12. S.R.S. Prabaharan, N.B. Saparil, S.S. Michael, M. Massot and C. Julien, Solid State Ionics., 112, 25 (1998) https://doi.org/10.1016/S0167-2738(98)00219-7
  13. W. Yang, Q. Liu, W. Qiu, S. Lu and L. Yang, Solid State Ionics., 121,79 (1999) https://doi.org/10.1016/S0167-2738(98)00532-3
  14. V. Maney, B. Banov, A. Momchilov and A. Nassalevska, J. Power Sources., 57,99 (1995) https://doi.org/10.1016/0378-7753(95)02227-9
  15. X.H. Hu, X.P. Ai, H.X. Yang and Sh.X. Li, J. Power Sources., 74, 240 (1998) https://doi.org/10.1016/S0378-7753(98)00049-4
  16. G. Pistoia, R. Rosati, J. Power sources., 58, 135 (1996) https://doi.org/10.1016/0378-7753(96)89188-9
  17. D.S. Ahn, M.Y. Song, J. Eletrochern. Soc., 147(3), 874 (2000) https://doi.org/10.1149/1.1393285
  18. Y. Gao, J.R. Dahn, J. Electrochern. Soc., 143(1), 100 (1996) https://doi.org/10.1149/1.1836393
  19. L.S. Jeong, H.B Gu, J. Korean Institute of Electrical and Electronic Materials Engineers., 12 (3), 229 (1999)