DOI QR코드

DOI QR Code

Behaviors of Grain Growth in Carbide Added TiC Matrix Cermets

탄화물첨가 TiC기지 서멧의 입성장 거동

  • Shin, Soon-GI (Division of Matallurigical and materials, and Chemical Engineering Dong-A University) ;
  • Lee, Jun-Hee (Division of Matallurigical and materials, and Chemical Engineering Dong-A University) ;
  • Lee, Hwa-Sang (Division of Matallurigical and materials, and Chemical Engineering Dong-A University)
  • 신순기 (동아대학교 재료금속·화학공학부) ;
  • 이준희 (동아대학교 재료금속·화학공학부) ;
  • 이상화 (동아대학교 재료금속·화학공학부)
  • Published : 2002.10.01

Abstract

The growth rate of solid grains in TiC-XC-2vol% and TiC-XC-30vo1% Ni cermets, where X=Zr, W or Mo, was fitted to an equation of the form $d^3$-$do^3$=Kt. The grain growth behavior during liquid phase sintering at 1673K decreased markedly with addition of $Mo_2$C or WC and increased with addition of ZrC. The contiguity ratio was greater in the alloys with smaller growth rate constant and decreased with increasing Ni content in the $TiC-Mo_2$C-Ni cermet. The grain growth mechanism could be explained by the effect of contiguous grain boundaries in restricting the overall grain growth.

Keywords

References

  1. E.K. Storms, The Refractory Carbides, pp. 11, ed., J.L. Margrave, Academic Press, New York and London, (1967)
  2. H. Suzuki, K. Hayashi, I. Gawakatsu: J. Jpn. Int Met, 31(9), 1100 (1967) https://doi.org/10.2320/jinstmet1952.31.9_1100
  3. R.M. German, Lliquid Phase Sintering, Plenum Press, New York, (1985)
  4. 鈴木壽, 超硬合金と燒結硬質村料(基礎と用), pp. 309, 丸善(株), (1986)
  5. N.M. Parikh, J. Amer. Ceram. Soc., 40, 335 (1957) PARIKH, N.M. https://doi.org/10.1111/j.1151-2916.1957.tb12547.x
  6. H. Doi, Science of Hard Materials, pp. 312, Adam Hilger Ltd., Bristol and Boston, (1984)
  7. H. Matsubara and T. Sakuma, Proc. of the International Institute of Sintering Symposium, pp. 1269, Elsrvier Applied Science, (1987)
  8. R. Warren, J. Less-Com. Met., 17, 65 (1969) https://doi.org/10.1016/0022-5088(69)90037-X
  9. R. Warren, J. Mater. Sci., 7, 1434 (1972) https://doi.org/10.1007/BF00574935
  10. H.E. Exner, Z. Metallkde, 64, 273 (1973)
  11. H.E. Exner, E.S. Marita and G. Petzow, Mod. Dev. Powder Met., pp. 315, ed., H. Hausner, Plenum Press, New York, (1971)
  12. L. Lindau and K.G. Stjernberg, Powder Met., 19, 210 (1976) https://doi.org/10.1179/pom.1976.19.4.210
  13. M. Humenik and N.M. Parikh, J. Am. Ceram. Soc., 39, 60 (1956) https://doi.org/10.1111/j.1151-2916.1956.tb15624.x
  14. N.M. Parikh and M. Humenik, J. Am. Ceram. Soc., 40, 315 (1957) https://doi.org/10.1111/j.1151-2916.1957.tb12628.x
  15. E.R. Stover and J. Wulff, Trans. Met. Soc. AIME, 215, 127 (1959)
  16. R.L. Fullman, Trans. Met. Soc. AIME, 197, 447 (1953)
  17. J. Gurland, Trans. Met. Soc. AIME, 212, 452 (1958)
  18. E.E. Underwood, Quantitative Stereology, pp. 312, Addision-Wesley, Reading, MA, (1970)
  19. T. Yamamoto, A. Jaroenworaluck, Y. Ikuhara and T. Sakuma, J. Mater. Res., 14(11), (1999)
  20. 山家菱, 貞廣孟史, 粉體および粉末治金, 16, 190 (1969)
  21. H. Suzuki, K. Hayashi and O. Terada, J. Japan Inst. Met., 35, 146 (1971) https://doi.org/10.2320/jinstmet1952.35.2_146
  22. D. Moskowitz and M. Humenik, Jr., Modern Development in P/M, vol. 3, pp. 88, ed., H. H. Hausner, Plenum Press, N. Y. (1966)
  23. H. Suzuki, K. Hayashi and O. Terada, J. Japan Inst. Met., 35, 936 (1971) https://doi.org/10.2320/jinstmet1952.35.9_936
  24. J.L. Chermant and M. Coaster, J. Microscopy, 109, 269 (1977) https://doi.org/10.1111/j.1365-2818.1977.tb01140.x
  25. C. Wagner, Z. Elektrochem., 65, 581 (1961)
  26. G.W. Greemwood, Acta Metall. 4, 243 (1956) https://doi.org/10.1016/0001-6160(56)90060-8
  27. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 19, 35 (1961) https://doi.org/10.1016/0022-3697(61)90054-3
  28. S. Sarian and H.W. Wert, J. Appl. Phys. 37, 1675 (1966) doi: https://doi.org/10.1063/1.1708583
  29. A.J. Ardell, Acta Metall., 20, 61 (1972) https://doi.org/10.1016/0001-6160(72)90114-9
  30. H.E. Exner and H. Fischmeister, Arch. Eisenhuttenwesen, 37, 417 (1966)
  31. E. Hanitzsch, M. Kahlweit, Z. Phys. Chem. I. N.F. 57, 145 (1968) https://doi.org/10.1524/zpch.1968.57.3_6.145
  32. E. Hanitzsch, M. Kahlweit, Z. Phys. Chem. II. N.F. 65, 290 (1969a) https://doi.org/10.1524/zpch.1969.65.5_6.290
  33. E. Hanitzsch, M. Kahlweit, Symposium on Industrial Crystallisation, 130-141 (1969b)
  34. R. Warren and M.B. Waldron, Powder Metallurgy, 15, 180 (1972)
  35. P.W. Voorhees and M.E. Glicksman, Metall. Trans., 15A, 1081 (1984)
  36. S.G. Yang, S.S. Mani and R.M. German, JOM, April, 11 (1990)
  37. R. Warren and M.B. Waldron, Powder Met., 15, 180 (1972)
  38. D.S. Buist, B. Jackson, I.M. Stephenson, W.F. Ford and J. White, Trans. Brit. Ceramic Soc., 64, 173 (1965)
  39. I.M. Stephenson and J. White, Trans. Brit. Ceramic Soc., 66, 443 (1967)
  40. S.S. Kim and D.N. Yoon, Acta Met., 31, 1151 (1983) https://doi.org/10.1016/0001-6160(83)90177-3
  41. Trans. Brit. Ceramic Soc. v.64 D.S.Buist;B.Jackson;I.M.Stepenson;W.F.Ford;J.White
  42. Trans. Brit. Ceramic Soc. v.66 I.M.Stephenson;J.White
  43. Acta Met. v.31 S.S.Kim;D.N.Yoon https://doi.org/10.1016/0001-6160(83)90177-3