DOI QR코드

DOI QR Code

Thermal Stability of Titanium and Cobalt Thin Films on Silicon Oxide Spacer

티타늄과 코발트 박막의 산화규소 스페이서에 대한 열적안정성

  • Cheong, Seong-Hwee (Department of Materials Sciecne and Engineering, The University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Sciecne and Engineering, The University of Seoul) ;
  • Kim, Min-Sung (Department of Information and Communications Engineering, School of Information Engineering)
  • 정성희 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 김민성 (동명정보대학교 정보통신공학과)
  • Published : 2002.11.01

Abstract

We investigated the reaction stability of titanium, cobalt and their bilayer films with side-wall spacer materials of SiO$_2$ for the salicide process. We prepared Ti 350 $\AA$, Co 150 $\AA$, Co 150 $\AA$/Ti 100 $\AA$ and Ti 100 $\AA$/Co 150 $\AA$ films on 1000 $\AA$-thick thermally grown SiO$_2$ substrates, respectively. Then the samples were rapid thermal annealed at the temperatures of $500^{\circ}C$, $600^{\circ}C$, and $700^{\circ}C$ for 20 seconds. We characterized the sheet resistance of the metallic layers with a four-point probe, surface roughness with scanning probe microscope, residual phases with an Auger depth profilometer, phase identification with a X-ray diffractometer, and cross-sectional microstructure evolution with a transmission electron microscope, respectively. We report that Ti reacted with silicon dioxide spacers above $700^{\circ}C$, Co agglomerated at $600^{\circ}C$, and Co/Ti, Ti/Co formed CoTi compound requiring a special wet process.

Keywords

References

  1. R.T. Tung, Applied Surface Science, 117/118, 268 (1997) https://doi.org/10.1016/S0169-4332(97)80092-X
  2. H. Zhang, J. Poole, R. Eller, and M. Keefe, J. Vac. Sci. Technol. A, 17(4), 1904 (1999) https://doi.org/10.1116/1.581702
  3. S. Wolf, Silicon Processing for the VLSI era, Lattice Press. (1995)
  4. S.M. Sze, VLSI Technology, Johy Wiley & Sons (1988)
  5. S.M. Sze, Semiconductor Devices, McGraw-Hill (1985)
  6. C.M. Osburn, J.Y. Tsai and J. Sun, J. Electron Material, 25, 1725 (1996) https://doi.org/10.1007/s11664-996-0028-x
  7. J. Chen, J.P. Colinge, D. Flandre, R. Gillon, J.P. Raskin, and D. Vanhoenacker, J. Electrochem. Soc., 144(7) (1997)
  8. J.J. Sun, J.Y. Tsai, and C.M.Osburn, IEEE Transactions on Electron Devices, 45(9), 1946 (1998) https://doi.org/10.1109/16.711360
  9. R.T. TUNG, MRS Spring(1996)
  10. F. Hong, B.K. Patnaik, B.Z. Li, P. Liu, Z. Sun, and G.A. Rozgonyi, MRS Spring, 311 (1993)
  11. J. Lutze, G. Scott, M. Manley, IEEE Electron Device Letters, 21(4), 155 (2000) https://doi.org/10.1109/55.830966
  12. H. Fang, M.C. Oztu, E.G. Seebauer, D.E. Batchelor, Journal of the Electrochemical Society, 146(11), 4240 (1999) https://doi.org/10.1149/1.1392621
  13. S.L. Hsia, T.Y. Tan, J. Appl. Phys., 72(5) (1992) https://doi.org/10.1063/1.351659
  14. J.B. Lasky, J.S. Nakos, O.J. Cain, and P.J. Geiss, IEEE Transactions on Electron Devices, 38, 262 (1991) https://doi.org/10.1109/16.69904
  15. J.P. Gambino, E.G. Colgan, A.G. Domenicucci, and B. Cunningham, J. Electrochem. Soc., 145(4) (1998) https://doi.org/10.1149/1.1838470
  16. Y.S. Ahn and O.S. Song, Korean Journal of Materials Research, 11(2), 71 (2001)
  17. A.E. Morga, E.K. Broadbent, K.N. Ritz, D.K. Sadana and B.J. Burrow, J. Appl. Phys., 64, 344 (1988) https://doi.org/10.1063/1.341434
  18. C.Y. Ting, M. Wittmer, S.S. lyer and S.B. Brodsky, J. Electrochem. Soc., 131, 2934 (1984) https://doi.org/10.1149/1.2115445
  19. G.J.P. Krooshof, F.H.P. M.Habraken, W.F. van der Weg, L. Van den hovw, K. Maex and R.F. De Keersmaecker, J. Appl. Phys., 63, 5110 (1988) https://doi.org/10.1063/1.340411