DOI QR코드

DOI QR Code

NO2 Sensing Characteristics of WO3 Thick Film Sensors Using Nanosized WO3 Powders Prepared by Sol-Precipitation Process

Sol-Precipitation법으로 제조된 WO3 나노분말을 이용한 후막 센서의 NO2 감지 특성

  • Ryu, Hyun-Wook (Research institute of Energy Resources Technology, Chosun University) ;
  • Park, Kyung-Hee (Research institute of Energy Resources Technology, Chosun University) ;
  • Kim, In-Chun (Department of Physics, Chosun University) ;
  • Hong, Kwang-Joon (Department of Physics, Chosun University) ;
  • Park, Jin-Seong (Department of Materials Engineering, Chosun, University)
  • 류현욱 (조선대학교 에너지자원신기술 연구소) ;
  • 박경희 (조선대학교 에너지자원신기술 연구소) ;
  • 김인천 (조선대학교 자연대학 물리학과) ;
  • 홍광준 (조선대학교 자연대학 물리학과) ;
  • 박진성 (조선대학교 공과대학 재료공학과)
  • Published : 2002.12.01

Abstract

Nanosized $WO_3$ powders were synthesized by the sol-precipitation process using $WCl_{6}$ as the starting material, ethanol as a solvent and $NH_4$OH solution as a precipitant, followed by a washing-drying treatment and calcination. The effects on the powder crystallinity and microstructure of calcination temperature were investigated with XRD and FE-SEM. The $WO_3$ powders calcined at $500^{\circ}C$ and $700^{\circ}C$ showed good crystallinity and their mean particle size was 30nm and 70nm, respectively. These powders were used for the preparation of pastes which were printed as thick films on alumina substrates with comb-type Pt electrodes. The particle size strongly influenced the $NO_2$ gas sensing property of the thick films. A significant reduction in the $NO_2$ sensitivity was observed for the film prepared from larger particle size, having thus a larger grain size. For the film having a smaller grain size, on the other hand, the higher $NO_2$ sensitivity was observed and the sensitivity increased with $NO_2$ concentration.

Keywords

References

  1. K. Taylor, Catal. Rev.-Sci. Eng., 35(4), 457 (1993) https://doi.org/10.1080/01614949308013915
  2. N.O. Korolkoff, Solid State Tech., 32(12), 49 (1989) https://doi.org/10.1016/0038-1101(89)90047-6
  3. Z.R. Ismagilov and M.A. Kerzhentsev, Catal. Rev.-Sci. Eng., 32(1,2), 51 (1990) https://doi.org/10.1080/01614949009349940
  4. H. Meixner, J. Gerblinger, U. Lampe and M. Fleischer, Sensors and Actuators B, 23, 119 (1995) https://doi.org/10.1016/0925-4005(94)01266-K
  5. Y. Yamada, K. Yamashita, Y. Masuoka and Y. Seno, Sensors and Actuators B, 77, 12 (2001) https://doi.org/10.1016/S0925-4005(01)00665-7
  6. U. Lampe, J. Gerblinger and H. Meixned, Sensors and Actuators B, 26, 26 (1995) https://doi.org/10.1016/0925-4005(94)01565-Y
  7. S. Matsushima, D. Ikeda, K. Kobayashi and G. Okada, Sensors and Actuators B, 13, 621 (1993) https://doi.org/10.1016/0925-4005(93)85118-T
  8. N. Imanaka, Y. Hirota and G. Adachi, J. Electrochem. Soc., 142(6), 1950 (1995) https://doi.org/10.1149/1.2044220
  9. N. Mitura, S. Yao, Y. Shimizu and N. Yamazoe, Sensors and Actuators B, 13, 387 (1993) https://doi.org/10.1016/0925-4005(93)85408-3
  10. S. Kudo, H. Ohnishi, T. Matusumoto and M. Ippommatsu, Sensors and Actuators B, 23, 219 (1995) https://doi.org/10.1016/0925-4005(94)01282-M
  11. K. Moriya, H. Enomoto and Y. Nakamura, Sensors and Actuators B, 13, 412 (1993) https://doi.org/10.1016/0925-4005(93)85414-6
  12. M. Akiyama, J. Tamaki, N. Miura and N. Yamazoe, Chemistry Lett., 1611 (1991) https://doi.org/10.1246/cl.1991.1611
  13. M. Akiyama, Z. Zhang, J. Tamaki, N. Miura and N. Yamazoe, Sensors and Actuators B, 13, 619 (1993) https://doi.org/10.1016/0925-4005(93)85117-S
  14. M. Aizawa, Chemical Sensor Technology, Vol. 5, p. 47, Kodansha Ltd., Tokyo Japan, (1994)
  15. J.F. McAleer, P.T. Moseley, T.O.W. Norris and D.E. Williams, J. Chem. Soc. Faraday Trans., 83, 1323 (1987) https://doi.org/10.1039/f19878301323
  16. J. Tamaki, Z. Zang, K. Fujimori, M. Akiyama, T. Harada, N. Miura and N. Yamazoe, J. Electrochem. Soc., 141(8), 2207 (1994) https://doi.org/10.1149/1.2055088
  17. David R. Lide and H.P.R. Frederikse, Handbook of Chemistry and Physics, 74th ed., pp. 4-109, CRC Press, Boca Raton, FL, USA, (1993)