DOI QR코드

DOI QR Code

Synthesis of Nanosized Brookite-type Titanium Dioxide Powder from aqueous TiOCl2 Solution by homogeneous Precipitation Reaction

TiOCl2 수용액의 균일침전반응에 의한 나노크기의 브루카이트상 TiO2 분말제조

  • 이정훈 (우석대학교 화학공학과) ;
  • 양영석 (우석대학교 화학공학과)
  • Published : 2002.12.01

Abstract

HCl concentration and reaction time are the decisive factors in determining the structure of precipitates in the process of synthesis of $TiO_2$ particles from aqueous $TiOCl_2$ solution by precipitation and the volumetric proportion of brookite phase in $TiO_2$ particles can be controlled by these two factors. As reaction rate increases with increase of reaction temperature, the reaction time, at which maximum volumetric proportion of brookite phase in $TiO_2$ particles was obtained, was reduced. The brookite was transformed directly to rutile phase with only increase of reaction time. And precipitation was delayed with increase of HCl concentration because the amount of $H_2$O, which is necessary source of oxygen for conversion of $Ti^{+4}$ to $TiO_2$, was relatively reduced with increase of that. Brookite in the mixture phase powder was finally transformed to rutile phase via anatase through heat-treatment.

Keywords

References

  1. S.J. Kim, S.D. Park, C.J. Jeon, K.H. Kim, H.G. Lee, Journal of the Korean Ceramic Socity, 35(10) 1212-1221 (1998)
  2. S.J. Kim, S.D. Park, and Y.H. Jeong, J. Am. Ceramic. Soc., 82(4), 927-32 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01855.x
  3. Y. Zheng, E. Shi, S. Chi, W. Li, X. Hu, J. Mater. Sci Letters, 19, 1445-1448 (2000) https://doi.org/10.1023/A:1011010306699
  4. H. Kominami, M. Kohno, and Y. Kera, Journal of Materials chemistry, 10, 1151-1156 (2000) https://doi.org/10.1039/a908528i
  5. S.D. Park, Y.H. Cho, W.W. Kim, and S.J. Kim, Journal of Solid State Chemistry, 146, 230-238 (1999) https://doi.org/10.1006/jssc.1999.8342
  6. Q. Zhang, L. Gao, and J. Guo, Journal of European Ceramic Society, 20, 2153-2158 (2000) https://doi.org/10.1016/S0955-2219(00)00085-6
  7. J. Yang, S. Mei, and J.M. Ferreira, Journal of American Ceramic Society, 83(6), 1361-1868 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01394.x
  8. L. Gao and Q. Zhang, Materials Transactions, 42(8), 1676-1680 (2001) https://doi.org/10.2320/matertrans.42.1676
  9. A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles, and J.P. Jolivet, Journal of Materials Chemistry, 11, 1116-1121 (2001) https://doi.org/10.1039/b100435m
  10. Y. Zheng, S. Erwei, C. Suxian, L. Wenjun, and H. Xingfang, Journal of American Ceramic Society, 83(10), 2634-36 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01605.x
  11. H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater., 7, 663-671 (1995) https://doi.org/10.1021/cm00052a010
  12. S.J. Kim, H.G. Lee, S.D. Park, C.J. Jeon, C.K. Lee, C.H. Kim, and E.G. Lee, Journal of the Korean Ceramic Socity, 37(5), 473-478 (2000)
  13. C.C. Wang, J.Y. Ying, Chem., Mater, 11(11), 3113-3120 (1999) https://doi.org/10.1021/cm990180f
  14. G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers and J.M. Seakins, Journal of Raman spectroscopy, 26, 57-62 (1995) https://doi.org/10.1002/jrs.1250260110
  15. X. Ye, J. Sha, Z. Jiao, L. Zhang, Nanostructure Materials, 8(7), 919-927 (1997) https://doi.org/10.1016/S0965-9773(98)00013-0