Synthesis of ZnS : Cu nano-crystals and structural and optical properties

ZnS : Cu nano 업자의 합성 및 구조적.광학적 특성

  • 이종원 (한밭대학교 신소재공학부) ;
  • 이상욱 (한밭대학교 신소재공학부) ;
  • 조성룡 (한밭대학교 신소재공학부) ;
  • 김선태 (한밭대학교 신소재공학부) ;
  • 박인용 (한밭대학교 신소재공학부) ;
  • 최용대 (목원대학교 광전자물리학과)
  • Published : 2002.06.01

Abstract

In this study, ZnS: Cu nano-crystals are synthesized by solution synthesis technique (SST). The structural properties such as crystal structure and particle morphology, and the optical properties such as light absorption/transmittance, energy bandgap, and photoluminescence (PL) excitation/emission are investigated. In an attempt to realize the Cu-doping easiness, the synthesis temperature (~$80^{\circ}C$) is applied to the synthesis bath, and the thiourea is used as sulfur precursor, unlike other general chemical synthesis route. Both undoped ZnS and ZnS : Cu nano-crystals have the cubic crystal structure and have the spherical particle shape. The position of light absorption edge is ~305 nm, indicating the occurrence of quantum size effect. The PL emission intensity and line-width are maximum and minimum, respectively, for Cu-doping concentration 0.03M. In particular, the dependence of PL intensity and line-width on the Cu-doping concentration for ZnS : Cu nano-crystals synthesized by SST is reported for the first time in this study. Experimental results of the absorption edge and the PL excitation show that the main emission peak of ZnS : Cu nano-crystals (~510 nm) in this study is due to the radiative recombination center in the energy bandgap induced by Cu dopant.

본 연구에서는 용액합성법(solution synthesis technique)에 의해 ZnS : Cu nano 입자를 합성하였고, 결정구조 및 입자형상 등의 구조적 특성과, 광흡수/투과 특성, 에너지밴드갭, 그리고 photoluminescence(PL) 여기 및 발광 특성 등의 광학적 특성을 분석하였다. 일반적인 용액상태의 화학적 합성 방법과는 달리 합성온도를 $80^{\circ}C$로하였으며, sulfur의 precursor로 thiourea를 채택하여 Cu 도핑의 용이성을 구현하였다. 합성된 undoped ZnS 와 ZnS : Cu nano 입자는 모두 cubic 구조를 가졌으며 구형입자로 합성되었고, 광흡수단의 위치도 모두 ~305 nm에 나타나서 양자사이즈효과가 발생하였음을 알 수 있었다. PL 발광강도와 반가폭은 Cu 도핑농도가 0.03M 일 때 각각 최고치와 최저치를 나타냈는데, 이와 같이 용액합성법에 의해 합성된 ZnS : Cu 에서 Cu 의 농도변화에 따른 PL 스펙트럼의 강도와 반가폭의 변화는 본 연구에서 최초로 보고되는 것이다. 광흡수단 측정 및 PL 여기 실험결과, 본 연구의 주된 발광피크인 ~510 nm 발광밴드는 Cu에 의해 에너지밴드갭 내에 형성된 발광재결합센터를 통한 것임을 알 수 있었다.

Keywords

References

  1. L.E. Brus, 'Semiconductor Crystallites : A Class of Large Molecules', Ace. Chem. Res. 23 (1990) 183
  2. A.A. Khosravi, M. Kundu and B.A. Kuruvilla, 'Manganese Doped Zinc Sulphide Nanoparticles by Aqueous Method', Appl. Phys. Lett. 67 (1995) 2506
  3. A.A. Khosravi, M. Kundu, L. Jatwa, S.K. Deshpande and U.A. Bhagwat, 'Green Luminescence from Copper Doped Zinc Sulphide Quantum Particles', Appl. Phys. Lett. 67 (1995) 2702
  4. A.R. Kortan, R. Hull, R.L. Opila and M.G. Bawendi, 'Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media', J. Am. Chem. Soc. 112 (1990) 1327
  5. G.D. Stucky and J.E. MacDougall, 'Quantum Confine-ment and Host/Guest Chemistry: Probing a New Dimen-sion', Science 247 (1990) 669
  6. L. Sun, C. Liu, C. Liao and C. Yan, 'Optical Properties of ZnS : Cu Colloids Prepared with Sulfurous Ligands', Sol. St. Comm. 111 (1999) 483
  7. L. Sun, C. Liu, C. Liao and C. Yan, 'ZnS Nanoparti-cles Doped with Cu(l) by Controlling Coordination and Precipitation in Aqueous Solution', J. Mater. Chem. 9 (1999) 1655
  8. J. Ihanus, M. Ritala, M. Leskela and T. Prohaska, 'AFM Studies on ZnS Thin Films Grown by Atomic Layer Epitaxy', Appl. Surf. Sci. 120 (1997) 43
  9. P.J. Sebastian, J. Campos and P.K. Nair, 'Effect of Post-deposition Treatment on Morphology, Structure and Opto-electronic Properties of Chemically Deposited CdS Thin Films', Thin Solid Films 227 (1993) 190
  10. D.S. Chuu and C.M. Dai, 'Quantum Size Effects in CdS Thin Films', Phys. Rev. B 45 (1992) 11805
  11. M.S. Tyagi, 'Semiconductor Materials and Devices' (John Wiley & Sons, New York, 1991) Chap. 5
  12. P.H. Borse, N. Deshmukh, R.E. Shinde, S.K. Date and S.K. Kulkarmi, 'Luminescence Quenching in ZnS Nan-oparticles Due to Fe and Ni Doping', J. Mater. Sci. 34 (1999) 6087
  13. H. Asai and K. Oe, 'Energy Band-Gap Shift with Elas-tic Strain in GaInP Epitaxial Layers on (001) GaAs Substrates', J. Appl. Phys. 54 (1983) 2052
  14. S. Mukai, 'Photoluminescence and Electrical Properties of InGaPAs Mixed Crystals Liquid Phase Epitaxially Grown on (100) GaAs', J. Appl. Phys. 54 (1983) 2635
  15. Y.K. Su, M.C. Wu and B.S. Chiu, 'Effects of Lattice Mismatch on the Properties of InGaAs/InP Heterojunc-tions', J. Cryst. Growth 96 (1989) 47
  16. V. Swaminathan, 'Materials Aspects of GaAs and InP Based Structures' (Prentice Hall, Englewood Cliffs, 1991), p. 281