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Abstract

We present a new technique fbr achieving source separation when given only a single channel recording. The main 

ide a is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis 

fwictions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum 

likelihood approach given the observed single channel data and sets of basis functions. For each time point we infer the 

source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions 

and the associated coefficient densities. A flexible model fbr density estimation allows accurate modeling of the observation, 

and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real 

en'zironment recordings employing mixtures of two different sources. We show separation results of two music signals 

as well as the separation of two voice signals.

Keywords： Blind source separation, Independent component analysis (ICA), Computational auditory scene analysis 

(CASA), Adaptive filtering

L Introduction

'The need for extracting individual sound sources from 

mixtures of different signals is increasing in both of the 

commercial and scientific fields. Many researchers in 

computational auditory scene analysis (CASA)[1] and 

independent component analysis (ICA)[2] formulated the 

prcblem as: we assume that the observed signal is an 

addition of P independent source signals

y，=/Jx ； + 人2元* + …+ 人p* %, (1)
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where x - is the tth sampled value of the ith source signal, 

and Ai is the gain of each source which is fixed over time. 

In our manuscript, we denote superscripts fbr sample 

indices of time-varying signals and subscripts for the 

source identification. The gain constants are affected by 

several factors, such as powers, locations, directions and 

many other characteristics of the source generators as well 

as sensitivities of the sensors. It is convenient assumingall 

the sources to have zero mean and unit variance. The 

goal is to recover all x / given only a single sensor input 

y'. The problem is too ill conditioned to be mathema

tically tractable since the number of unknowns is PT+ P 

given only T observations.

Various sophisticated methods have been proposed in 

the research areas such as computational auditory scene 
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analysis (CASA)[3,4] and independent component analysis 

(ICA)[2]. Separation algorithms in CASA are based on 

isolating auditory streams in time or frequency domain by 

assuming the sparseness of the sources, that is, the 

observed instances of the individual sources are mutually 

exclusive in time samples or in spectral domain. Previous 

work tried to localize the acoustic objects into separate 

streams, such as classifying speech segments into the same 

pitch ( Fq) groups[3] or decorrelating frequency bands[4]. 

Recently Roweis[5] has presented a refiltering technique 

that estimates 爲 in Equation 1 as time-varying masking 

filters that localize sound streams in powerspectral domain. 

In his work sound sources are supposedly disjoint in the 

spectrogram and there exists a "mask” that divides 

completely multiple streams. These approaches are however 

able to be applied to certain limited environments due to 

the intuitive prior knowledge of the sources such as 

harmonic modulations or temporal coherency of the acoustic 

objects.

ICA is a data driven method that relaxes the strong 

frequency characteristical assumptions. However, the ICA 

algorithms perform best when the number of the observed 

signals is greater than or equal to the number of sources 

[2]. Although some recent over-complete representations 

may relax this assumption, but the problem of separating 

sources from a single channel observation remains difficult. 

ICA has been shown to be highly effective in other aspects 

such as encoding speech signals[6] and natural sounds[7]. 

The basis fimctions and the coefficients learned by ICA 

constitute an efficient representation of the given time- 

ordered sequences of a sound source by estimating the 

maximum likelihood densities, thus reflecting the statistical 

structures of the sources.

This paper introduces a technique for separation of 

mixed sources in single channel observations utilizing the 

ICA basis functions. The algorithm recovers original 

sound streams in a number of gradient-ascent adaptation 

steps maximizing the log-likelihood of the separated 

signals, which is calculated by the likelihood of their 

associated coefficients fbr the given basis functions. We 

make use of not only the ICA basis functions as a strong 

prior for the source characteristics, but their associated 

coefficient distributions modeled by generalized Gaussian 

density functions[8] as an objective function of the learning 

algorithm. The experimental results showed that two 

different sources were almost perfectly recovered in the 

simulated mixtures of rock and jazz music, and male and 

female speech signals, as well as in the real recordings of 

mixed speech signals and music sound.

II. Adapting Basis Functions and Model 

Parameters

The algorithm first involves the learning of the time

domain basis fiinctions of the sound sources that we are 

interested in separating. This corresponds to the prior 

information necessary to successfully separate the signals. 

We assxime two different types of generative models in the 

observed single channel mixture as well as in the original 

sources. The first one is depicted in Figure 1-A. As 

described in Equation 1, at every ^[1, T\ the observed 

instance is assumed to be a weighted sum of different 

sources. In our approach(mly the case of P=2 is 

regarded. This corresponds to the situation defined in 

Section 1 in that two different signals are mixed and 

observed in a sin미e sensor.

For the individual source signals, we adopt a decom

position-based approach as another generative model. This 

approach was employed formerly in analyzing sound 

sources[6,7] by expressing a fixed-length segment drawn 

from a time-varying signal as a linear superposition of a 

number of elementary patterns, called basis functions, with 

scalar multiples (Figure 1-B). Contiguous samples of length 

N with N< < T are chopped out of the whole samples 

of a source, from t to f+N—1, and the subsequent 

segment is denoted as an TV-dimensional column vector 

in a boldface letter, x -=[x ■ x-+1 ■■-尤尸"一attaching 

the lead-off sample index fbr the superscript and repre

senting the transpose operator with T. It is then expressed 

as a linear combination of the basis functions such that
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Figure 1. Generative models for the observed mixture and original scarce signals (A) A single channel observation is generated by a 
weighted sum of two source signals with different characteristics. (B) Individual source signals are generated by weighted 
linear superpositions of basis functions. (C) The distribution of the weight has a sharp summit at the mean, with long tails. 
They are modeled by generalized Gaussian density functions with varying the exponent.

x ；= JIi a诵s*= Aq ； (2)

where Mis the number of basis functions, is the kth 

basis hm아ion of ith source in the form of A^-dimensional 

column vector, s* its coefficient (weight) and S ；= 

[s： s* ... s釦The r.h.s. is the matrix-vector notation.

The second subscript k followed by the source index i 

in y * represents the component number of the coefficient 

vector s We assume that M — N and A has full rank 

so tiat the transforms between x - and s ； be reversible 

in both directions. The inverse of the basis matrix, W,= 

A J1, refers to the ICA filters that generates the 

coefficient vector, s ；= W2 x ■.

Tie purpose of this decomposition is to model the 

mul:ivariate distribution P(x ■) in a statistically efficient 

way. The ICA learning algorithm is equivalent to searching 

for i:he linear transformation that make the components as 

statistically independent as possible, as well as maximizing 

the marginal densities of the transformed coordinates for 

the given training data[9,10],

W ；= arg max HP(x \ ; W<) = arg max HIjRs*).⑶ 
w, f w, t r

Independence between the components factorizes the 

joint probabilities of the coefficients into the product of 

marginal ones, and independence over time does on the 

segments. What matters is therefore how well matched the 

model distribution is to the true underlying distribution of 

P(s £). The coefficient histogram of real data reveals that 

the distribution has a highly sharpened point at the peak 

with a long tail (Figure 1-C). Therefore we use a 

generalized Gaussian prior[8] that provides an accurate 

estimate for symmetric non-Gaussian distributions by 

fitting the exponent q in the set of parameters 0 in its 

simplest form

P(s I ^)ooexp[-[ [ ], 0 = {“,。,力， (4)

where “ = E[s] and a=^ V(s). The ICA learning algo

rithm fbr the basis functions is proposed in[ll], which 

incorporates generalized Gaussian priors in modeling 

source distributions. It can be derived using the maximum 

likelihood formulation. The probability density function of

x - is approximated by W, and the density function of 

the coefficient vector, which is given by[12]:

P(x -)=/>(s ； I 3d I det W』， (5)

where /)( • ) is the generalized Gaussian density function, 
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and 0 = 0 心…m — parameter group of all the coefficients, 

with the notation ' i.. meaning an ordered set of the 

elements from index i to j. The term |det W? | gives 

the change in volume produced by the linear transforma

tion W« (see e.g.[13]). The log of Equation (5) is

log P(x ；)스 logZ)(s i I + log I det W』. (6)

Maximizing the log-likelihood with respect to W£ 

gives a learning rule fbr W：[ll]:

△W*[(W?)T-伊(s J)(x ；)] ⑺

where the component of the vector fimction °(s ；) is

Ms) = = _ _寒slI sign (S), ⑻

expressed by the parameters c, q, and a of the gener

alized Gaussian for 力(s) as defined in Equation 4. It is 

assumed that the mean of source signal s is zero so “ 

has been eliminated. An efficient way to maximize the 

log-likelihood is to follow the "natural" gradient[12],

△W,•이(W?)T —p(s ；)(x ；)T]W?

=[l-p(s ；)(s ；)” W,. (9)

Here W f W, rescales the gradient, simplifies the 

learning rule in Equation 7, and speeds convergence 

considerably. It has been shown that the general learning 

algorithm in Equation 9 can be derived from several 

theoretical viewpoints such as MLE[13], infbmax[14], and 

negentropy maximization[2]. The basis filters W： and 

their individual parameter set 6ik are obtained beforehand 

and used as prior information for the following source 

separation algorithm.

III. Source Separation Algorithm

To infer the sources we perform log-likelihood maxi

mization given the model parameters. Scaling factors of 

the generative model are learned as well.

3.1. Learning Rules for Source Signals
The learned basis filters maximize the likelihood of the 

given data. Suppose we were given the basis filters. Could 

we infer the learning data? The answer is generally "no” 

when N< T and no other information is given. In our 

problem of single channel separation, half of the solution 

is already given by the constraint yl= J + X2x # where 

x ■ constitutes the basis learning data x - (Figure 1-B). 

The goal of the algorithm to be presented is to complement 

the remaining half with the statistical information given by 

the coefficient density parameters 0ik (Figure 1-C). At 

every time point a segment x ； generates the independent 

coefficient vector s /= Wi x Respectively s 須=W2 x 

Assuming the independence over time, the probability of 

the wh이e signal x \"T is determined by the marginal ones 

of all the possible segments, and can be computed by 

Equation (5)

R서”'= 如(x f)스 立「P(s / I 0!)|det Wi| (10)

where, for convenience, Tn = The objective

function to be maximized is the multiplication of the total 

probability densities of both sound sources, and we denote 

its log by L\

乙= logR 崩

스 価 10gD(S / I 0j)+ 10g/)(S 2 I ®2)]

+ Ta，log I det Wj| det W2|. (11)

Our interest is in adapting x{ and 光* fbr VZ^[1, 71, 

toward the maximum of the objective fimction L. To infer 

the sound sources and their contribution factors simul

taneously, instead of x\ we derive the learning rule on 

their weighted time-varying variables in a

gradient-ascent manner by summing up the gradients of all 

the segments where the sample lies:
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t=盘，)+ Wl"(S2"l ®2)]

= 割 M) 끗+ 割 "沪利]

8 £1卩2 W°(sR)細初一如 爵乂麗汎시, (12)

which is derived by the fact that

as £ = a(w 任 x'")jxL = 3知

出， dxf dzl 人

and

奨=。(3"力)=_

d^i dzi 

where tn= t— n+1,払珈= W«以，%), and <p(s) is de

fined in Equation 8. Note that the gradient of L for z2, 

dL/dz2 = ~ dL/dzi， always makes the condition y== 

幺十癸 satisfy, so learning rule on either 由 or 矣 

subsumes the other counterpart.

The detailed derivation of the proposed method is 

sum marized as 4 stages in Figure 2. The whole figure 

shows one adaptation step of each sample. In stage (A), 

the source signals are decomposed into N statistically 

independent codes to be considered separately while 

obtaining the learning rules. The decomposition is done by 

a set of the given ICA filters. In (B), the stochastic 

gradient ascent for the filter output code is obtained by 

taking derivatives of the log probability density function 

of the code (Equation 8). In (C), the computed gradient 

is transformed to the source domain. All the filter output 

codes are regarded independent, so all the computations 

are performed independently. However in (D), we combine 

all the independently computed gradients and modify them 

to satisfy the initial constraint. The gradients are summed 

up and then scaled appropriately to obtain the final 

learning rates in Equation 12. The four stages comprise 

one iteration step. The solution is achieved after repeating 

this iteration on the source signal 先;to a convergence 

from a certain initial value.

Figure 3 gives a conceptual explanation fbr how to map 

△ s * to the original input domain Each w 诵 takes 

windows of N contiguous samples, e.g. x ； = [x\ ... 

xli+N~l], and using this as input the filter produces the 

source coefficient s * as output. Each individual sample

y— 叵I 土쓰쓰

Figure 2. The overall structure and the data flow of the proposed method. In the beginning, we are given single channel data yl, and 
we have the estimates of the so니「ce signals, x ■, at every adaptation step. (A) 必 =**： At each timepoint, the current 
estimates of the source signals are passed through a set of basis filters, generating n sparse codes s* that are statistically 
independent. (B) s 3 =>△$*： The stochastic gradient for each code is obtained by taking derivative of log likelihood of each 
individu이 code. (C) The gradient for each code is transformed to the domain of source signal. (D) (finalization)：

The individ나기 gradients are combined and modified to satisfy the given constraints, to be added to the current estimates 
of the source signals.
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Fig니re 3. The participation of a sample in the source signal to the generation of each output coefficient. The input x； is a vector
composed of n contiguous samples ranging from t to t+N-i in the sound source. The output coefficient is obtained
by passing x- through Wrt, one of the basis filters. The middle of the figure shows that over a sample of the source
sign히 there exist n different possible covers, which im에es that a sample participates in the generation of n different
output coefficients per filter.

of the source participates in the generation of N different 

inputs, and henceforth in the generation of N different 

output coefficients for each filter.

3.2. Updating Scaling Factors
Updating the contribution factors 爲 can be accom

plished by simply finding the maximum a posteriori 

values. To simplify the inferring steps, we force the sum 

of the factors to be constant: e.g. 為 + 人2 =1・ Given the 

basis functions W? and the current estimate of the sources 

x\"T, the posterior probability of is

P^x I 서匸先尸Wi, W2)8R서…£ WDRMT ^2)PM
(13)

where pA( • ) is the prior density function of A. The value 

of A1 maximizing the posterior probability also maximizes 

the its log,

A*= arg max (L + log , (14)
A

where L is the log probability density of the estimated 

sources defined in Equation 11. Assuming that A is 

unifbmily distributed, 8{乙 + logpA(X)}/dA = dL/dA, which 

is calculated as 

where

231og/>(s M0,), (16)

OAj

derived by the chain rule

31og£)(s :) Slog力(욨 !) S s ；

3爲 d s / 以i

=*(s ；)T W,. z 土). (17)

In the case of exponential power distributions, 岛 is 

always less than or equal to zero because, for each 

coefficient s of s ■ (subscripts are omitted for compact 

notation),
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q心 wA z ■ = p(s)专

= 3号|摂1奇卽($)」或으骅이

(T /I

=3-岩|s|。M 0, 
(7 A

< >卩= W &E) w» £ M o, (18) 

wh(ire w 左 is the kth basis filter and Equation 18 holds 

because c, q, cr,』그 0. Therefbre 5L/5^i = 0 subject to 

Ax -F A2= 1 and A2s[0,1] always has a solution at the 

local maxima of L such that

dL n _ 人7 叩、
布=° 0云=寸/°，

_ /W \TWi
V 1%1+V 丨四 ' 心— v 1%1+V 丨冬지 •

(19)

(20)

/iccording to the above equations the algorithm updates 

the scaling factors w.r.t. the current estimate of the source 

signals.

IV. Experiment기 Results

We have tested the performance of the proposed method 

on the single channel mixtures of four different sound 

typss. They were monaural signals of rock and jazz music, 

male and female speech. We used different sets of speech 

signals fbr learning basis functions and fbr generating mix

tures. For the mixture generation, two sentences of the target 

speakers 'mcpmO' and 'fdawO', one for each, were se

lected from the TIMIT speech database. The training set 

cor sisted of 21 sentences fbr each gender, 3 fbr each of 

randomly chosen 7 males (or females) from the same 

database excluding the 2 target speakers. Rock music was 

ma inly composed of guitar and drum sounds, and jazz was 

gei ierated by a wind instrument. Vocal parts of both music 

sounds were excluded. All signals were downsampled to 

8 IcHz, from original 44.1 kHz (music) and 16 kHz 

(speech) data. The training data were segmented in 64 

samples (8 ms) starting at eveiy sample. Audio files for 

all the experiments are accessible at the website 

http://speech.kaist.ac.kr/~jangbaL

Figure 4 displays the actual source signals, some ex

amples of adapted basis functions, and their coefficient 

densities. Music basis functions exhibit consistent ampS- 

tudes with harmonics, and the speech basis functions are 

similar to a Gabor wavelet, Gaussian modulated sinusoidal. 

Figure 5 compares four sound sources by the average 

powerspectra. Each covers all the frequency bands, although 

they are different in amplitude. One might expect that 

simple filtering or masking cannot separate the mixed 

sources clearly.

We generated sin이e channel mixture by simply picking 

two sources out of the four and adding them. Then we 

applied the proposed method and reported the signal-to- 

noise ratios (SNRs) of the mixed signal (before 

separation) and the recovered results ( z ■: after separation) 

with the original sources(£?=/，％；) in Table 1. Given 

the original source s and its estimate s, SNR is defined 

by

A Vq2
snr (s, s )[dB] = 10 log io .

In terns of total SNR increase the mixtures containing 

music signals are recovered more clea끼y than male-female 

mixture. Separation of jazz music and male speech was 

the best, and the waveforms are illustrated in Figure 6.

In summary, our method has several advantages over 

traditional approaches to signal separation. They involve 

either spectral techniques[5] or time-domain nonlinear 

filtering techniques[3,4]. Spectral techniques assume that 

sources are disjoint in the spectrogram, which frequently 

result in audible distortions of the signal in the region 

where the assumption mismatches. Recent time-domain 

filtering techniques are based on splitting the whole signal 

space into several disjoint subspaces. Although they 

overcome the limit of spectral representation, they consider 

second-order statistics only, such as autocorrelation, which 

restricts the separable cases to orthogonal subspaces.

Our method avoids these strong assumptions by utilizing 

a prior set of basis functions that captures the inherent
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Figure 4. Waveforms of the 4 sound sources, learned basis functions (5 were chosen out of 64), and the estimated coefficient density 
functions. The hjll set of basis functions is available on the website as w이I.
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Figure 5. Average powerspectra of the 4 sound s이jrces. Frequency scale ranges 0 to 4 kHz (x-axis), since all the signals are sampled 
at 8kHz. The powerspectra are averaged and represented in the y-axis.
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statistical structures of the source signal. A decomposition

based, time-domain generative model on the source signals 

enables an iterative adaptation on the actual signals in the 

signal level. This generative model therefore makes use of 

spectral and temporal structures at the same time. The 

constraints are dictated by the ICA algorithm that forces 

the basis functions to result in an efficient representation,

i.e.  the linearly independent source coefficients; and both, 

the basis functions and their corresponding pdf are key to 

obtaining a faithful MAP based inference algorithm. An 

important question is how well the training data has to 

match the test data. We have also performed experiments 

with the set of basis functions learned from the test sounds 

and the SNR decreased on average by 1 dB.

V. Experiments with Real Recordings

We have tested the performance of the proposed method 

on the recordings in a real environment. Single microphone 

is uied in recording a mixture of two sounds 一 mechani

cal noise and male speech. First we recorded the mere 

noise through the microphones without any intervening 

speech or other sound source, and used it as training data 

for the basis functions of the noise. Then we recorded a 

male speaker's talking under high level of noise, and 

applied our separation algorithm to obtain the two sources 

given only the sin임e channel input. The basis functions 

of male speaker at the previous experiment (in Figure 4) 

are adopted for the recorded male speaker. The average 

powerspectra are compared in Figure 7. The two kinds of 

sound sources have similar characteristics though low 

freqaency components of mechanical noise are more 

emphasized. The full set of the basis functions as well as 

the separated resxilts is available at the website also. The 

algorithm successfully recovered the original so니rces as 

shown in Figure 8.

VI. Collisions

We presented a technique for single channel source 

separation utilizing the time-domain ICA basis functions. 

Instead of well-known prior knowledge of the sources, we 

exploited the statistical structures of the sources that are 

inherently captured by the basis and its coefficients. The 

algorithm recovers original sound streams through gradient

ascent adaptation steps pursuing the maximum likelihood 

estimate of original sources, induced by the parameters of 

the basis filters and the generalized Gaussian distributions 

of the filter coefficients. With the separation results of the 

real recordings as well as simulated mixtures, we demon

strated that the proposed method is applicable to the real 

world problems such as source separation, denoising, and 

restoration of corrupted or lost data. Future research issues 

include providing a qualitative and objective description 

about the separability of our method.
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