Constitutive Activation of $p70^{S6k}$ in Cancer Cells

  • Kwon, Hyoung-Keun (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University) ;
  • Bae, Gyu-Un (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University) ;
  • Yoon, Jong-Woo (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University) ;
  • Kim, Yong-Kee (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University) ;
  • Lee, Hoi-Young (Department of Pharmacology, College of Medicine, Konyang University) ;
  • Lee, Hyang-Woo (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University) ;
  • Han, Jeung-Whan (Department of Biochemistry and Molecular Biology, College of Pharmacy, Sungkyunkwan University)
  • Published : 2002.10.01

Abstract

The mitogen-stimulated serine/threonine kinase $p70^{S6k}$ plays an important role in the progression of cells from $G_0/G$_1$$ to S phase of the cell cycle by translational up-regulation of a family of mRNA transcripts family of mRNA transcripts which contain polypyrimidine tract at their 5 transcriptional start site. Here, we report that $p70^{S6k}$ was constitutively phosphorylated and activated to various degrees in serum-deprived AGS, A2058, HT-1376, MG63, MCF7, MDA-MB-435S, MDA-MB-231 and MB-157. Rapamycin treatment induced a significant dephosphorylation and inactivation of $p70^{S6k}$ in all cancer cell lines, while wortmannin, a specific inhibitor of PI3-K, caused a mild dephosphorylation of $p70^{S6k}$ in AGS, MDA-MB-435S and MB-157. In addition, SQ20006, methylxanthine phosphodiesterase inhibitor, reduced the phosphorylation of $p70^{S6k}$ in all cancer cells tested. Consistent with inhibitory effect of rapamycin on $p70^{S6k}$ activity, rapamycin inhibited [$^3H$]-thymidine incorporation and increased the number of cells at $G_{0}G_{1}$ phase. Furthermore, these inhibitory effects were accompanied by the decrease in growth of cancer cells. Taken together, the results indicate that the antiproliferative activity of rapamycin might be attributed to cell cycle arrest at $G_{0}G_{1}$ phase in human cancer cells through the inhibition of constitutively activated $p70^{S6k}$ of cancer cells and suggest $p70^{S6k}$ as a potential target for therapeutic strategies aimed at preventing or inhibiting tumor growth.

Keywords

References

  1. Andjelkovic, M., Jakubowicz, T., Cron, P., Ming, X. F.,Han, J. W. and Hemmings, B. A., Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc. Natl. Acad. Sci. USA, 93, 5699-5704 (1996) https://doi.org/10.1073/pnas.93.12.5699
  2. Avruch, J., Zhang, X. F. and Kyriakis, J. M., Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem. Sci., 19, 279-283 (1994) https://doi.org/10.1016/0968-0004(94)90005-1
  3. Barlund, M., Forozan, F., Kononen, J., Bubendorf, L., Chen, Y., Bittner, M. L., Torhorst, J., Haas, P., Bucher, C., Sauter, G., Kallioniemi, O. P. and Kallioniemi, A., Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J. Natl. Cancer lnst., 92, 1252-1259 (2000) https://doi.org/10.1093/jnci/92.15.1252
  4. Chang, L. and Karin, M., Mammalian MAP kinase signalling cascades. Nature, 410, 37-40 (2001) https://doi.org/10.1038/35065000
  5. Cheatham, B., Vlahos, C. J., Cheatham, L., Wang, L., Blenis, J. and Kahn, C. R., Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol., 14, 4902-4911 (1994) https://doi.org/10.1128/MCB.14.7.4902
  6. Chung, J., Grammer, T., Lemon, K. P., Kazlauskas, A and Blenis, J., PDGF- and insulin-dependent pp$70^{s6k}$ activation mediated by phosphatidylinositol-3-OH kinase. Nature, 370, 71-75 (1994) https://doi.org/10.1038/370071a0
  7. Clemens, M. J. and Bommer, U. A, Translational control: the cancer connection. lnt. J. Biochem. Cell. Biol., 31, 1-23 (1999) https://doi.org/10.1016/S1357-2725(98)00127-7
  8. Conus, N. M., Hemmings, B. A and Pearson, R. B., Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p$70^{s6k}$ J. Biol. Chem., 273, 4776-4782 (1998) https://doi.org/10.1074/jbc.273.8.4776
  9. Cowley, S., Paterson, H., Kemp, P. and Marshall, C. J., Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell, 77, 841-852 (1994) https://doi.org/10.1016/0092-8674(94)90133-3
  10. Davis, R J., The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem., 268, 14553-14556 (1993)
  11. Downward, J., Signal transduction. A target for PI(3) kinase. Nature, 376, 553-554 (1995) https://doi.org/10.1038/376553a0
  12. Feig, L. A, The many roads that lead to Ras. Science, 260, 767-768 (1993) https://doi.org/10.1126/science.8484117
  13. Ferrari, S., Pearson, R. B., Siegmann, M., Kozma, S. C. and Thomas, G., The immunosuppressant rapamycin induces inactivation of p$70^{s6k}$ through dephosphorylation of a novel set of sites. J. BioI. Chem., 268, 16091-16099 (1993)
  14. Jefferies, H. B. J., Reinhard, C., Kozma, S. C. and Thomas, G., Rapamycin selectively represses translation of the 'polypyrimidine tract' mRNA family. Proc. Natl. Acad. Sci. USA, 91, 4441-4445 (1994) https://doi.org/10.1073/pnas.91.10.4441
  15. Jefferies, H. B. J., Thomas, G. and Thomas, G., Elongation factor-1 alpha mRNA is selectively translated following mitogenic stimulation. J. Biol. Chem., 269, 4367-4372 (1994)
  16. Kitamura, T., Ogawa, W, Sakaue, H., Hino, Y, Kuroda, S., Takata, M., Matsumoto, M., Maeda, T., Konishi, H., Kikkawa, U. and Kasuga, M., Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol. Cell. Biol., 18, 3708-3717 (1998) https://doi.org/10.1128/MCB.18.7.3708
  17. Ming, X. F., Burgering, B. M. T., Wennstrom, S., Claesson, W. L., Heldin, C. H., Bos, J. L., Kozma, S. C. and Thomas, G., Activation of p70/p85 S6 kinase by a pathway independent of p$21^{ras}$. Nature, 371, 426-429 (1994) https://doi.org/10.1038/371426a0
  18. Morley, S. J. and Thomas, G., Intracellular messengers and the control of protein synthesis. Pharmacol. Ther., 50, 291-319 (1991) https://doi.org/10.1016/0163-7258(91)90047-P
  19. Schlessinger J., How receptor tyrosine kinases activate Ras. Trends Biochem. Sci., 18, 273-275 (1993) https://doi.org/10.1016/0968-0004(93)90031-H
  20. Seger, R. and Krebs, E. G., The MAPK signaling cascade. FASEB J., 9, 726-35 (1995)
  21. Seufferlein, T. and Rozengurt, E., Rapamycin inhibits constitutive p$70^{s6k}$ phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res.,56, 1895-1897 (1996)
  22. Stewart, M. J. and Thomas G., Mitogenesis and protein synthesis: a role for ribosomal protein S6 phosphorylation? BioEssay, 16, 809-815 (1994) https://doi.org/10.1002/bies.950161107
  23. Weng, Q. P., Khurshid, A, Kozlowski, M. T., Grove, J. R. and Avruch, J., Multiple independent inputs are required for activation of the p70 S6 kinase. Mol. Cell. Biol., 15, 2333-2340 (1995) https://doi.org/10.1128/MCB.15.5.2333