

Four New Acetylated Ginsenosides from Processed Ginseng (Sun Ginseng)

II Ho Park^{1,2}, Sang Beom Han³, Jong Moon Kim¹, Longzhu Piao¹, Sung Won Kwon¹, Na Young Kim¹, Tak Lim Kang⁴, Man Ki Park¹, and Jeong Hill Park^{1,2}

¹Rese arch Institute of Pharmaceutical Sciences and ²Ginseng Science Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea, ³Seoul Clinical Laboratories, Dongbingo dong, Yongsan gu, Seoul 140-230, Korea, and ⁴College of Oriental Medicine, Taejon University, Taejon 300-120, Korea

(Received February 9, 2002)

Four new acetylated ginsenosides were isolated from the processed ginseng (SG, sun ginseng). Their structures were determined to be $3\beta,12\beta$ -dihydroxydammar-20(22),24-diene-3-O- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-6"-O-acetylglucopyranoside; $3\beta,12\beta$ -dihydroxydammar-20(21), 24-diene-3-O- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-6"-O-acetylglucopyranoside; $3\beta,$ $6\alpha,12\beta$ -trihydroxydammar-20(22),24-diene-6-O- β -D-6'-O-acetylglucopyranoside and $3\beta,6\alpha,12\beta$ -trihydroxydammar-20(21),24-diene-6-O- β -D-6'-O-acetylglucopyranoside based on spectroscopic evidences. The compounds were named ginsenoside Rs $_4$, Rs $_5$, Rs $_6$ and Rs $_7$, respectively.

Key words: Panax ginseng, Acetylated ginsenoside, Processed ginseng, Sun ginseng

INTRODUCTION

Ginser g (Panax ginseng C. A. Meyer, Araliaceae) is one of the most popular herbal medicines in the Orient (Han, 1988) Thousands of papers have reported its chemical constituents, biological activities, and cultivation. The most well-known chemical constituent of ginseng is ginsenoside, which is a dammarane glycoside. More than 30 ginsenosides have been reported from ginseng so far (The society for Korean Ginseng, 1995). Ginsenosides Rb₁, Flb₂ Rc, Rd, Rg₁, Rg₂, and Re are major constituents of white and red ginsengs, while ginsenosides Rh₁, Rh₂, Rg₃, Rg₆, Rg₆, Rs₁, Rs₂ and Rs₃ are known to be unique constituents of red ginseng (Kim et al., 1996, Kitagawa et al., 1983, Ryu et al., 1997). Ginsenosides Rh₁, Rh₂, and Rg₃ are deglycosylated ginsenosides of ginsenosides Rg₂, Rg₂, and Rd, while ginsenosides Rg₅ and Rg₆ are dehycrated ginsenoside of Rg₃ and Rg₂, respectively. Ginsenoside: Rs₁, Rs₂, and Rs₃ are acetylated ginsenosides of girsenoside Rb₂, Rc, and Rg₃, respectively. Recently, we reported a new type of processed ginseng, named sun ginseng (SG), with increased radical scavenging, vasocilating, and anti-tumor promoting activities (Kim et

al., 2000; Keum et al., 2000). Recently, we reported three new dammarane glycosides from SG (Park et al., 2002). Further study on the chemical constituents of SG led us to the isolation of four new acetylated ginsenosides.

MATERIALS AND METHODS

¹H-NMR and ¹³C-NMR spectra were recorded on AMX 500 NMR spectrometer (Bruker, Germany) or Lambda 300 spectrometer (Jeol, Tokyo, Japan). AX 505WA double-focusing mass spectrometer (Jeol, Tokyo, Japan), DIP-360 polarimeter (Jasco, Tokyo, Japan), and 1710 IR spectrometer (Perkin-Elmer, Beaconsfield, U.K.) were used. Ag-impregnated TLC plate was prepared by spraying 3% AgNO₃ in MeOH on a precoated TLC plate (Merck Art. 5717, Darmstadt, Germany).

Isolation of ginsenosides

Dried rootlet of ginseng (3 kg) was steamed at 120°C for 3 hours in an autoclave. Steamed ginseng was extracted with MeOH (10 L) three times under reflux for 2 hr. The solvent was removed in vacuo to yield 0.4 kg of MeOH extract, which was suspended in water (5 L) and extracted with CH_2Cl_2 (10 L). The remaining aqueous layer was extracted with water-saturated n-BuOH (10 L) three times. The n-BuOH fraction was concentrated in vacuo to yield 0.3 kg of BuOH fraction, which was subjected to

Correspor dence to: Jeong Hill Park, College of Pharmacy, Seoul National University, Seoul 151-742, Korea

E-mail: hillpark@snu.ac.kr

838 I. H. Park *et al.*

silica gel column chromatography. Five fractions were obtained using stepwise gradient elution (EtOAc: MeOH: $H_2O = 40:1:1 \rightarrow 10:1:1$) (Park et al., 2002).

Isolation of compound 1 and 2 (ginsenoside Rs_4 and Rs_5)

Fraction 3 was chromatographed over silica gel using EtOAc: $MeOH: H_2O = 25: 1: 1$ solvent. Compound 1 and compound 2 rich fractions were obtained, which were further purified on Ag-impregnated preparative TLC using EtOAc: $MeOH: H_2O = 15: 1: 1$ solvent. The bands were visualized by spraying water. Compounds 1 and 2 were collected from the band of Rf = 0.3 and Rf = 0.25, respectively. They were further purified over semi-preparative HPLC using a reverse-phase column (LiChrospher 100 RP-18, 250 mm × 10 mm i.d.) with 60% CH_3CN eluent to isolate compound 1 (20 mg) and compound 2 (13 mg).

Compound **1** : Amorphous powder, $C_{44}H_{72}O_{13}$, mp: 161-162 °C, $[\alpha]_D$: +2.54° (MeOH, c = 0.2%, 20); IR ν_{max} (KBr, cm⁻¹): 3400, 2950, 1740, 1450 Mass (FAB⁺, 6 kV, Xe, glycerol): 831 ([M+Na]⁺). ¹H-NMR (500 MHz, C_5D_5N , ppm): 0.85 (3H, s, H-29), 0.97 (3H, s, H-30), 1.05 (3H, s, H-19), 1.13 (3H, s, H-18), 1.34 (3H, s, H-28), 1.59 (3H, s, H-27), 1.63 (3H, s, H-26), 1.82 (3H, s, H-21), 2.05 (3H, s, CH₃CO), 3.28 (1H, dd, J = 4.3, 11.6 Hz, H-3), 3.92 (1H, m, H-12), 4.89 (1H, d, J = 7.3 Hz, H-1'), 5.23 (1H, t, J = 6.9 Hz, H-24), 5.31 (1H, d, J = 7.7 Hz, H-1"), 5.51 (1H, t, J = 7.0 Hz, H-22). ¹³C-NMR (125 MHz, C_5D_5N , ppm) : Table I.

Compound **2** : $C_{42}H_{70}O_{12}$, amorphous powder, mp: 140-142 °C, $[\alpha]_D$: +13.5 ° (MeOH, c = 0.4%, 10), IR ν_{max} (KBr, cm⁻¹): 3411, 2947, 1741, 1637, 1450, 1078. Mass (FAB⁺, 6 kV, Xe, glycerol): 837 ([M+Na]⁺). ¹H-NMR (500 MHz, C_5D_5N , ppm, D_2O exchanged): 0.67 (1H, d, J = 11.86 Hz, H-5), 0.77 (3H, s, H-19), 0.93 (3H, s, H-30), 0.99 (3H, s, H-18), 1.05 (3H, s, H-29), 1.26 (3H, s, H-28), 1.57 (3H, s, H-27), 1.62 (3H, s, H-26), 2.02 (3H, s, CH₃CO), 2.79 (1H, m, H-17), 3.24 (1H, dd, J = 11.58, 4.43 Hz, H-3), 3.90 (2H, m, H-12, 5'), 4.84 (1H, d, J = 7.36 Hz, H-1'), 4.88 (1H, br. s, H-21_a), 5.14 (1H, br. s, H-21_b), 5.24 (2H, br. d, J = 7.75 Hz, H-1", H-24). ¹³C-NMR (125 MHz, C_5D_5N , ppm): Table I.

Isolation of Compounds 3 and 4 (ginsenoside Rs_6 and Rs_7)

Fraction 2 was chromatographed over silica gel using n-Hexane: Isopropyl alcohol = 6:1 solvent to give compound 3 and compound 4 rich fractions. The fractions were further purified by semi-preparative HPLC using a reverse-phase column (LiChrospher 100 RP-18, 250 mm \times 10 mm i.d.) with 50% CH₃CN eluent to yield compound 3 (10 mg) and compound 4 (9 mg).

Compound **3** : Amorphous powder, $C_{38}H_{62}O_{9}$, mp: 165-166 °C, $[\alpha]_D$: +18.8 ° (MeOH, c=0.5%, 10); IR v_{max} (KBr, cm⁻¹): 3400, 2926, 1734, 1370, 1246, 1031 Mass (FAB⁺,

6 kV, Xe, glycerol): 635 ([M+Na] $^+$). 1 H-NMR (300 MHz, C $_5$ D $_5$ N, ppm): 0.95 (3H, s, H-30), 1.05 (3H, s, H-19), 1.29 (3H, s, H-18), 1.55 (3H, s, H-29), 1.56 (3H, s, H-27), 1.61 (3H, s, H-26), 1.83 (3H, s, H-21), 2.05 (3H, s, H-28), 2.06 (3H, s, CH $_3$ CO), 2.49 (1H, br. d, J=9.99 Hz, H-7 $_a$), 2.77 (3H, m, H-23, 17), 3.50 (1H, dd, J= 11.5, 4.5 Hz, H-3), 4.01 (1H, m, H-12), 4.41 (1H, m, H-6), 5.21 (1H, br. t, J= 6.8 Hz, H-24), 5.48 (1H, br. t, J= 7.4 Hz, H-22). 13 C-NMR (75 MHz, C_5 D $_5$ N, ppm): Table I.

Compound **4** : Amorphous powder, $C_{42}H_{70}O_{12}$, mp: 110-112 °C, $[\alpha]_D$: + 21.1° (MeOH, c = 0.4%, 10); IR ν_{max} (KBr, cm⁻¹): 3400, 2929, 1735, 1368, 1034 Mass (FAB⁺, 6 kV, Xe, glycerol): 685 ([M+Na]⁺). ¹H-NMR (500 MHz, C_5D_5N , ppm) : 0.98 (3H, s, H-30), 1.08 (3H, s, H-19), 1.31 (3H, s, H-18), 1.55 (3H, s, H-29), 1.61 (3H, s, H-27), 1.67 (3H, s, H-26), 2.02 (3H, s, H-28), 2.06 (3H, s, CH₃CO), 2.82 (1H, m, H-17), 2.97 (1H, m, H-23), 3.51 (1H, br. d, J = 11.4 Hz, H-3), 3.93 (1H, m, H-12), 4.43 (1H, m, H-6), 4.92 (1H, br. s, H-21_a), 5.04 (1H, d, J = 7.7 Hz, H-1'), 5.16 (1H, br. s, H-21_b), 5.29 (1H, m, H-24). ¹³C-NMR (125 MHz, C_5D_5N , ppm) : Table I.

RESULTS AND DISCUSSION

Compound 1 (ginsenoside Rs₄)

Compound 1 was isolated as amorphous powder. This compound was not separated from compound 2 on a normal silica gel TLC plate or HPLC using an amino column. Compound 1 was separated from compound 2 on an AgNO₃-impregnated silicagel TLC plate and a reverse-phase HPLC. The molecular weight of compound 1 was 808, which suggested that compound 1 is a monoacetylated ginsenoside Rg₅ (MW = 766). The difference of molecular weight of 42 suggested an acetyl group. The ¹H- and ¹³C-NMR patterns of compound **1** were very similar to those of ginsenoside Rg₅, except for the signals arising from one acetyl group (Table I). δ_{H} 2.09 in its ¹H-NMR spectrum and δ_{C} 170.97 and δ_{C} 20.90 in its $^{13}\text{C-}$ NMR spectrum showed the characteristic peak of the acetyl group (C $\underline{\mathbf{H}}_3$ C = O, $\underline{\mathbf{C}}$ = O, and $\underline{\mathbf{C}}$ H $_3$ C = O, respectively) and 5", 6" carbon of sugar appeared at δ_c 75.36, 64.74, respectively. The carbonyl carbon at $\delta_{\rm c}$ 170.97 showed a connection with 6" proton (δ_H 4.78) of sugar in a heteronuclear multiple bond connection (HMBC) spectrum, which suggested the acetylation of 6" carbon of compound 1. Two anomeric carbon signals at 104.90 and 106.17, and signals between 60-85 ppm suggested that compound 1 is a protopanaxadiol type ginsenoside with two sugar moieties. Four olefinic carbon signals at $\delta_{\rm C}$ 140.19, 131.26, 123.80, and 123.51 suggested two double bonds in the molecule. Therefore, it was concluded that compound 1 is a monoacetylated ginsenoside with two double bonds. Thus, the structure of compound 1 was

Table I. 13C-NMR chemical shift of compound 1, 2, 3, 4 and ginsenoside Rg₅ (Kim et al., 1996), Rk₁, Rk₄, Rk₅

C No.	Rg₅	Compound 1 (Rs ₄)	Rk ₁	Compound 2 (Rs₅)	Rh₄	Compound 4 (Rs ₆)	Rk ₃	Compound 3 (Rs ₇)
	39.17	39.29	39.30	39.29	39.44	39.48	39.50	39.58
2	28.00	26.79	26.75	26.79	27.80	27.89	27.92	27.94
3	88.82	89.20	88.95 39.72	89.21	78.52	78.51	78.56	78.61
ĺ	40.14	39.75	39.72	39.74	40.27	40.49	40.37	40.32
į	56.29	56.46	56.43	56.47	61.36	61.40	61.44	61.49
(18.33	18.48	56.43 18.45	18.48	79.97	79.69	80.05	79.72
7	35.24	35.47	35.36	35.37	45.22	45.60	45.31	45.66
,	39.60	40.29	40.21	40.22	41.25	41.42	41.26	41.46
,	59.00	40.29	40.21	50.88				
}	50.66	50.79	48.23	50.88	50.50	50.55	50.64	50.70
.0	36.91	37.07	37.03	37.06	39.66	39.75	39.71	39.82
•1	32.10	32.20	32.60	32.60	32.18	32.31	32.73	32.80
^2	72.49	72.61	72.47	72.48	72.51	72.49	72.42	72.49
. 3	50.33	51.04 50.90	52.49	52.48	50.59	50.69	52.07	52.21
. 4	50.91	50.90	51.21	51.21	50.77	50.89	51.13	51.27
⁻ 5	32.54	32.63	32.67	32.66	32.47	32.69	32.50	32.71
¹ Ñ	26.64	28.83	30.77	30.76	28.74	28.77	30.71	30.76
. 6 . 7	50.80	50.44	50.86	48.24	50.32	50.39	48.27	48.22
· 8	16.35	15.84	16.45	15.82	17.31	17.36	17.33	17.41
· 9	16.49	16.45	15.80	16.43	17.67	17.72	17.73	17.78
10	140.06	140.19	155.55	155.55	140.01	140.02	155.42	155.47
20		140.19	100.00	100.00	140.01	140.02	108.11	100.47
11	13.07	13.16	108.15	108.15	13.07	13.16	100.11	108.24
12	123.21	123.51	33.89	33.87	123.42	123.17	33.70	33.99
13	27.35	27.45	27.08	27.08	27.38	27.43	27.02	27.12
14	123.54	123.80	125.33	125.33	123.78	123.83	125.33	125.37
15	131.16	131.26	131.21	131.20	131.18	131.22	131.18	131.25
26	25.60	25.67	25.74	25.74	25.64	25.68	25.74	25.77
17	17.66	17.71	17.74	17.74	17.67	17.70	17.33	17.78
18	28.73	28.01	28.11	28.01	31.63	31.54	31.70	31.59
19	15.72	16.45	16.58	16.43	16.27	16.50	16.34	16.51
(0	16.92	17.03	16.98	16.98	16.73	16.96	16.73	17.00
`1'	105.00	104.90	105.09	104.89	105.87	105.90	106.00	105.92
יכ	83.31	84.29	83.45	84.26	75.34	75.34	75.45	75.41
2' 3'	78.13	78.07	78.19	78.06	79.50	79.20	79.65	79.22
ţ,	71.50	71.02	71.65	71.02	79.30 71.71	71.37	71.82	71.47
!	71.30 77.82	71.02	71.00	71.02	71.71	/ 1.3/ 75.00	70.40	/ 1.4/ 75 47
<u>5</u> '	77.82	77.92	77.96 62.76	77.92	77.98	75.08	78.12	75.17
3'	62.58	62.84	62.76	62.84	62.96	62.12	63.06	65.17
1	105.91	106.17	106.01	106.14				
2	77.00	76.73	77.08	76.71				
3	78.21	78.52	78.34 71.72	78.52				
4	71.53	71.42	71.72	71.42				
5	77.98	75.36	78.06	75.35				
3	62.73	64.74	62.87	64.74				
<u>(</u> 0		170.97		170.96		170.88		170.86
<u>C</u> F₃C()		20.90		20.88		20.93		20.93

elucidated to be 3β , 12β -dihydroxydammar-20(22),24-diene-3-O- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-6"-O-acetylglucopyranoside. Since the compound has not been reported yet, we named it ginsenoside Rs₄.

Compound 2 (ginsenoside Rs₅)

Compound **2** was isolated as amorphous powder. The molecular weight of compound **2** was 808, which is the same as that of compound **1**. This suggests that compound **2** is a monoacetylated ginsenoside Rk₁ (MW 766) (Park *et al.*, 2002). The $^1\text{H-}$ and $^{13}\text{C-}$ NMR patterns of compound **2** were very similar to those of ginsenoside Rk₁, with the exception of signals arising from one acetyl group (Table I). δ_{H} 2.07 ppm in its $^1\text{H-}$ NMR spectrum and δ_{C} 170.93 and δ_{C} 20.88 in its $^{13}\text{C-}$ NMR spectrum showed the

characteristic peak of an acetyl group (C $\underline{\mathbf{H}}_3$ C = O, $\underline{\mathbf{C}}$ = O, and $\underline{\mathbf{C}}$ H₃C = O, respectively) and 5", 6" carbon of sugar appeared at $\delta_{\rm C}$ 75.35, 64.74, respectively. $\delta_{\rm C}$ 170.96 ($\underline{\mathbf{C}}$ = O), which showed a connection with proton signals at $\delta_{\rm H}$ 4.78 (C-6") in the HMBC spectrum, also suggested the acetylation of 6" carbon of sugar. Two anomeric carbon signals at 104.89 and 106.14, plus signals between 60-85 ppm in its ¹³C-NMR spectrum suggests that compound **2** is a protopanaxadiol type ginsenoside with two sugar moieties. Four olefinic carbon signals at $\delta_{\rm C}$ 155.55, 131.20, 125.33, and 108.15 suggest that there are two double bonds in the molecule. Therefore, it was concluded that compound **2** is an acetylated ginsenoside with two double bonds. Thus, the structure of compound **2** was elucidated to be 3 β ,12 β -dihydroxydammar-20(2 $\frac{1}{2}$),24-diene-3-O- β -

840 I. H. Park et al.

Fig. 1. Structure of ginsenoside Rg₅, Rs₄, Rk₁, Rs₅, Rh₄, Rs₆, Rk₃, Rs₇

D-glucopyranosyl(1 \rightarrow 2)- β -D-6"-O-acetylglucopyranoside. Since the compound is not reported yet, we named it ginsenoside Rs₅.

Compound 3 (ginsenoside Rs₆)

Compound 3 was isolated as amorphous powder. This compound was not separated from compound 4 on a normal silica gel TLC plate or HPLC using an amino column. Compound 3 was separated from compound 4 using semi-preparative reverse-phase HPLC. The molecular weight of compound 3 was 662, which suggested that compound 3 is a monoacetylated ginsenoside Rh₄ (MW 620), i.e., protopanaxatriol type ginsenoside with one sugar moiety. A signal at $\delta_{\rm C}$ 79.69 arising from oxygenated carbon at C-6 in $^{13}\text{C-NMR}$ supported the assumption. $^{1}\text{H-}$ and $^{13}\text{C-NMR}$ patterns of compound 3 were

very similar to those of ginsenoside Rh4 except for the signals arising from one acetyl group (Table I). $\delta_{\rm C}$ 170.88 and δ_{C} 20.93 displayed the characteristic peak of an acetyl group ($\underline{\mathbf{C}} = \mathbf{O}$, $\underline{\mathbf{C}} \mathbf{H}_3 \mathbf{C} = \mathbf{O}$), and 5', 6' carbons of sugar appeared at $\delta_{\rm C}$ 75.08, 65.12, respectively. Carbonyl carbon at δ_{C} 170.88 showed a connection with 6' proton of sugar in the HMBC spectrum, which suggested the acetylation of 6' carbon of compound 3. One anomeric carbon signal at δ_{C} 105.90 and signals between δ_{C} 65-80 suggested that compound 3 has one sugar moiety. Four olefinic carbon signals at δ_c 140.02, 131.22, 123.83, and 123.17 suggested two double bonds at 20(22) and 24 (25). These results also suggested that compound 3 has an acetyl group and two double bonds. Thus, the structure of compound 3 was elucidated to be 3β,6α,12β-trihydroxydammar-20(22),24-diene-6-O-β-D-6'-O-acetylglucopyranosic e. Since the compound has not been reported yet, we named it ginsenoside Rs₆

Compound 4 (ginsenoside Rs₇)

Compound 4 was isolated as amorphous powder. The molecular weight of compound 4 was 662, which is identical to that of compound 3, and which suggests that it is a monoace:ylated ginsenoside Rk₃ (MW 620) (Park et al., 2002). ¹H- and ¹³C-NMR signals of compound **4** were quite similar to those of ginsenoside Rk3, except for the chemical shift of an acetyl group (Table I). $\delta_{\rm C}$ 170.86 and δ_{C} 20.93 showed the characteristic peak of an acetyl group ($\mathbf{C} = O$, $\mathbf{C}H_3C = O$), and 5', 6' carbons of sugar appea ec at $\delta_{\rm C}$ 75.17, 64.17, respectively. $\delta_{\rm C}$ 170.86 ($\underline{\bf C}$ = O) showed a connection with a proton signal at δ_H 5.08 (C-6') n the HMBC spectrum also suggested the acetylation of 6' carbon of sugar. One anomeric carbon signal at $\delta_{\rm C}$ 105.92 and signals between $\delta_{\rm C}$ 65-80 ppm suggest that compound 4 has one sugar moiety. Four olefinic carbon signals at $\delta_{\rm C}$ 155.47, 131.25, 125.37, and 108.24 suggested two double bonds in the molecule. Therefore, it was concluded that compound 4 has an acetyl group and two dc uble bonds. Thus, the structure of compound 4 was elucidated to be 3β , 6α , 12β -trihydroxydammar-20(21),24diene-3-O-β-D-6'-O-acetylglucopyranoside. Since the compound has not been reported yet, we named it ginsenoside Fs7.

ACK NOWLEDGEMENTS

This work was supported by grant from the Korea Science

and Engineering Foundation (No. R01-2001-00220).

REFERENCES

- Han, D.S., Pharmacognogy. Dong Myoung Sa, Seoul, 1988.
 Keum, Y. S., Park, K. K., Lee, J. M., Chun, K. S., Park, J. H.,
 Lee, S. K., Kwon, H. J. and Surh, Y. J., Antioxidant and antitumor promoting activities of the methanol extract of heat-processed ginseng, Cancer Letters, 150, 41-48 (2000).
- Kim, S. I., Park, J. H., Ryu, J. H., Park, J. D., Lee, Y. H., Park, J. H., Kim, T. H., Kim, J. M. and Baek, N. I., Ginsenoside Rg₅, A Genuine Dammarane Glycoside from Korean Red Ginseng, *Arch. Pharm. Res.*, 19, 551-553 (1996).
- Kim, W. Y., Kim, J. M., Han, S. B., Lee, S. K., Kim, N. D., Park, M. K., Kim, C. K., Park, J. H., Steaming of Ginseng at High Temperature Enhances Biological Activity, *J. Nat. Prod.*, 63, 1702-1704 (2000).
- Kitagawa, I., Yoshikawa, M., Yoshigara, M., Hayashi, T. and Taniyama, T., Chemical Studies on Crude Drug Precession.
 I. On the Constitution of Ginseng Radix Rubra (1), Yakugaku Zasshi, 103, 612-622 (1983).
- Park, I. H., Kim, N. Y., Han, S. B., Kim, J. M., Kwon, S. W., Kim, H. J., Park, M. K., Park, J. H., Three new dammarane glycosides from heat processed ginseng, *Arch. Pharm. Res.*, 25, 428-432 (2002).
- Ryu, J. H., Park, J. H., Eun, J. H., Jung, J. H. and Sohn, D. H., A dammarane glycoside from Korean red ginseng, *Phytochemistry*, 44, 931-933 (1997).
- The society for Korean Ginseng, *Understanding of Korean Ginseng*, Seoul, 1995.