DOI QR코드

DOI QR Code

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro (Production Technology Development Center, SHARP Corporation) ;
  • Orata, Satoshi (Vaccum Engineering Division, Tsukishima Kikai Co. Ltd.) ;
  • Shoyama, Toshihiro (Department of Electronic Engineering, Graduate School of Engineering, Tohoku University) ;
  • Cho, Wan-Sick (Research Center for Advanced Magnetic Materials, Chungnam National University) ;
  • Yoon, Tae-Sick (Research Center for Advanced Magnetic Materials, Chungnam National University) ;
  • Tsunoda, Masakiyo (Department of Electronic Engineering, Graduate School of Engineering, Tohoku University) ;
  • Takahashi, Migaku (New Industry Creation Hatchery Center, Tohoku University)
  • Published : 2002.09.01

Abstract

Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Keywords

References

  1. J. Magn. Magn. Mater. v.139 T. Miyazaki;N. Tezuka https://doi.org/10.1016/0304-8853(95)90001-2
  2. Phys. Rev. Lett. v.74 J. S. Moodera;L. R. Kinder;T. M. Wong;R. Meservey https://doi.org/10.1103/PhysRevLett.74.3273
  3. Phys. Rev. v.B39 J. C. Slonczewski
  4. Jpn. J. Appl. Phys. v.39 Y. Ando;H. Kubota(et al.) https://doi.org/10.1143/JJAP.39.5832
  5. J. Appl. Phys. v.85 S. S. P. Parkin;K. P. Roche(et al.) https://doi.org/10.1063/1.369932
  6. J. Appl. Phys. v.87 H. Kikuchi;M. Sato;K. Kobayashi https://doi.org/10.1063/1.372610
  7. Appl. Phys. Lett. v.76 S. Cardoso;P. P. Freitas;C. de Jesus;P. Wei;f J. C. Soares https://doi.org/10.1063/1.125833
  8. Appl. Phys. Lett. v.77 X. F. Han;M. Oogane;H. Kubota;Y. ando;T. Miyazaki https://doi.org/10.1063/1.126951
  9. Jpn. J. Appl. Phys. v.34 J. Watanabe;Y. Kawai;N. Konishi;T. Ohmi https://doi.org/10.1143/JJAP.34.900
  10. Principles of Electron Tunneling Spectroscopy E. L. Wolf
  11. J. Appl. Phys. v.83 J. Zhang;R. M. White https://doi.org/10.1063/1.367644
  12. Jpn. J. Appl. Phys. v.39 T. Ueno;A. Morioka;S. Chikamura;Y. Iwasaki https://doi.org/10.1143/JJAP.39.L327
  13. IEEE Trans. Electron Devices v.48 K. Sekine;Y. Saito;M. Hirayama;T. Ohmi https://doi.org/10.1109/16.936559
  14. Appl. Phys. Lett. v.69 J. S. Moodera;L. R. Kinder;J. Nowak;P. LeClair;R. Meservey https://doi.org/10.1063/1.117814
  15. Inst. Electr. Commun. Eng. Tech. Rep. v.AP80-57 N. Goto;M. Yamamoto
  16. Jpn. J. Appl. Phys. v.38 T. Yamamoto;N. T. Chien;M. Ando;N. Goto;M. Hirayama;T. Ohmi https://doi.org/10.1143/JJAP.38.2082
  17. Jpn. J. Appl. Phys. v.38 Y. Saito;K. Sekine;M. Hirayama;T. Ohmi https://doi.org/10.1143/JJAP.38.2329
  18. OYO BUTURI v.69 T. Ohmi;S. Sugawa;M. Hirayama;Y. Saito
  19. IEEE Trans. Magn. K. Nishikawa;M. Tsunoda;S. Ogata;M. Takahashi
  20. J. Appl. Phys. v.34 J. G. Simmons https://doi.org/10.1063/1.1702682
  21. Appl. Phys. Lett. v.79 J. J. Åkerman;J. M. Slowghter;R. W. Dave;I. K. Schuller https://doi.org/10.1063/1.1413716
  22. Appl. Phys. Lett. v.80 M. Tsunjoda;K. Nishikawa;S. Ogata;M. Takahashi https://doi.org/10.1063/1.1475363
  23. Appl. Surf. Sci. v.79;80 T. Ueno;T. Akiyama;K. Kuroiwa;Y. Tarui
  24. J. Appl. Phys. v.83 M. Sato;H. Kikuchi;K. Kobayashi https://doi.org/10.1063/1.367933
  25. Appl. Phys. Lett. v.74 J. J. Sun;V. Soares;P. P. Freitas https://doi.org/10.1063/1.123057