DOI QR코드

DOI QR Code

Effects of Transverse Reinforcement on Flexural Strength and Ductility of High-Strength Concrete Columns

횡보강근에 따른 고강도 콘크리트 기둥의 휨강도와 연성

  • Published : 2002.06.01

Abstract

This experimental investigation was conducted to examine the behavior of eight a third scale columns made of high-strength concrete(HSC). The columns were subjected to constant axial load corresponding to target value of 30 percent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement(Ps=1.58, 2.25 %), tie configuration(hoop-type, cross-type, diagonal-type) and tie yield strength(fy=5,600, 7,950 kgf/$\textrm{cm}^2$). Test results indicated that the flexural strength of all the columns did not exceed calculated flexural capacities based on the equivalent concrete stress block used in current design code. Columns with 42 percent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-99 were shown ductile behavior. With axial load of 30 percent of the axial load capacity, the use of high-strength steel as transverse reinforcement may lead to equal or higher ductility than would be achieved with low-strength steel.

본 연구는 700kgf/$\textrm{cm}^2$ 고강도 콘크리트에서 횡보강근 형태, 체적비 그리고 횡보강근 항복강도에 따른 고강도 콘크리트기둥의 거동을 규명하기 위한 실험연구이다. 기둥은 중심축내력의 30%에 해당하는 일정축력과 수평방향의 반복 휨모멘트를 받는다. 본 연구에서 사용된 변수는 횡보강근 체적비(Ps=1.58, 2.25%), 횡보강근 형태(hoop-type, cross-type, diagonal-type) 그리고 횡보강근 항복강도(fy=5,600, 7,950 kgf/$\textrm{cm}^2$)이다. 실험결과로 모든 기둥의 휨강도는 현행규준의 등가응력블럭에 근거하여 산정된 휨강도보다 낮게 나타났다. 횡보강근을 ACI 규준 요구량보다 42%증가시킨 기둥 시험체는 연성적인 거동을 보였다. 그리고, 본 연구에서 적용한 축력비 0.3 P/PO하에서 고강도급 횡보강근을 사용한 시험체의 연성이 저강도급 횡보강근을 사용한 시험체의 경우보다 같거나 다소 큰 경향을 보이고 있었다.

Keywords

References

  1. ACI Committee 318, "Building Code Requirement for Structural Concrete and Commentary(ACI 318-99)," American Concrete Institute, Detroit, 1999.
  2. Setunge, S., Atttard, M. M., and Darvall, P. L., "Ultimate Strength of Confined Very High-Strength Concretes," ACI Journal, Vol. 90, No. 6, November-December 1993, pp.632-641.
  3. Sharp, P. D., "Seismic Response of Inelastic Structures," Ph. D dissertation, University of Canterbury, New Zealand, 1974.
  4. Mattock, A. H., Kriz, L. B., and Hognestad, E., "Rectangular Concrete Stress Distribution in Ultimate Strength Design," ACI Jouranl, Proceedings, Vol. 57, No. 8, Feb. 1961, pp.875-928.
  5. Nedderman, H., "Flexural Stress Distribution in Very High Strength Concrete," MSc Thesis, University of Texas Arlington, December 1973, p.182.
  6. Li, B., Park, R. and Tanka, H., "Effect of Confinement on the Behavior of High-Strength Concrete Columns Under Seismic Loading," Proceedings of the Pacific Conference on Earthquake Engineering, New Zealand, Nov.1991.
  7. Azizinamini, A., Kuska, S., Brungardt, P., and Hatfeild, E., "Seismic Behavior of Square High-Strength Concrete Columns," ACI Jouranl, Vol. 91, No. 3, May-Jun. 1994, pp.336-345.
  8. Hisham, I. and MacGregor, J. G., "Flexural Behavior of High-Strength Concrete Columns," Structural Engineering Report, No.196, University of Alberta, Edmonton, Alberta, March, 1994.
  9. Muguruma, H. and Watanabe, F., "Ductile Behavior of High-Strength Concrete Columns Confined by High-Strength Transverse Reinforcement," SP 128-54, ACI International, 1991.