Effete of Ozone Uptake Rate on Photosynthesis and Antioxidant Activity in the Leaves of Betula Species

자작나무류 잎의 오존흡입량이 광합성 및 항산화효소 활성에 미치는 영향

  • 이재천 (임업연구원 임목육종부) ;
  • 한심희 (임업연구원 임목육종부) ;
  • 장석성 (임업연구원 임목육종부) ;
  • 조경진 (임업연구원 임목육종) ;
  • 김용율 (임업연구원 임목육종부)
  • Published : 2002.06.01

Abstract

This study was conducted to compare the physiological and biochemical responses of four Betula species in response to ozone, and to find out the relationship between ozone uptake rate and photosynthesis or antioxidant activity. One-year-old seedlings of four Betula sp, B. costata, B. davurica, B. platyphylla var, japonica, and B. ermani, exposed to 100 pub ozone concentration for 8h day$^{-1}$ for 5 weeks in fumigation chamber. Ozone uptake rate, photosynthesis, SOD and GR activity were measured in the leaves of four species once a week. Cumulative ozone uptake rate was largest in the loaves of B. costata(53.8 mmol m$^{-2}$ ), smallest in the leaves of B. davurica(35.5 mmol m$^{-2}$ ). Photosynthesis of four Betula sp. exposed to ozone reduced relative to control, but the photosynthetic responses with changing stomatal conductance were different among species. Ozone exposure increased SOD activities of four species at the early exposing period, but after a critical point SOD activity decreased gradually. GR activity of B. costata was similar to the change of SOD activity, but the others showed the different patterns from B. costata. In conclusion, decreasing both SOD and GR activity at the critical point, B. costata may be sensitive species in response to ozone. In contrast, the others may be resistant species, which gradually increase GR activity following ozone exposure. GR activity was not always in accord with the change of SOD activity against ozone uptake, and the different responses between species were supposed to be affected by the cumulative ozone uptake.

자작나무류 4개 수종의 오존에 대한 생리 생화학적인 반응 특성을 비교하고, 수종별 오존 홉입량과 광합성 능력 및 항산화효소 활성간의 연관성을 찾기 위하여 거제수나무, 물박달나무, 자작나무, 사스래나무 묘목에 5주 동안 100 ppb 오존을 노출시킨 후 오존 흡입량, 광합성, SOD, GR 활성을 측정하였다. 5주 동안의 누적 오존 흡입량은 거제수나무가 53.8 mmol m$^{-2}$ 로 가장 많았으며, 물박달나무가 35.5 mmol m$^{-2}$ 로 가장 적었다. 오존에 노출된 4개 수종의 광합성 능력은 감소하였으나 기공전도도에 따른 광합성 반응은 수종간 달랐다. 4개 수종의 SOD 활성은 누적 오존 홉입량이 증가함에 따라 증가하다가 감소하였다. GR 활성은 거제수나무의 경우 SOD 활성과 마찬가지로 점차 증가하다가 감소하였으나, 다른 세 수종은 누적 오존 흡입량이 증가하면서 지속적으로 증가하였다. 결론적으로 거제수나무는 누적 오존 흡입량의 증가로 SOD와 GR 활성을 잃어버리는 민감성 수종으로 나타났으나, 다른 세 수종은 GR 활성을 지속적으로 증가시키는 저항성을 보였다. 또한 오존 흡입량에 따른 SOD와 GR 활성 반응은 반드시 일치하지 않으며, 수종별 반응 차이는 오존 흡입량에 큰 영향을 받는 것으로 판단되었다.

Keywords

References

  1. 김명희, 이수욱, 1992: 조경수목의 대기오염물질에 대한 방어기능 (I)- SOD 활성을 중심으로-. 한국임학회지, 81, 164-176.
  2. 박용규, 설일환, 김학윤, 정일경, 신동일, 1998: 단기간 오존처리에 의한 두 잡종포플러의 SOD 활성과 SOD 유전자 발현 변화. 한국육종학회지, 30, 36-41
  3. 이재천, 김인식, 여진기, 구영본, 2001: 잎의 가시적 피해에 따른 오존에 대한 미류나무(Populus deltoides) 클론간 감수성 비교. 한국임학회지, 90, 10-18.
  4. 한심희, 2000: 중금속 오염 토양에서 포플러류 수종의 중금속 내성과 모래밭 버섯 균근균 접종에 의한 Cd 내성 변화. 서울대학교박사학위논문, 152 p.
  5. Allen, R.D., 1995: Overexpression of chloroplastic Cu/Zn superoxide dismutase in plants. Methods in Molecular Biology, Vol.44: Agrobacterium Protocols., K.M.A. Gartland and M.R. Davey. (Eds) Humana Press Inc., 309-323.
  6. Asada K, M. Takahashi and M. Nagate, 1974: Assay and inhibitors of spinach superoxide dismutase. Agricultural and Biological Chemistry, 38, 471-473.
  7. Asada, K., 1999: The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601-639.
  8. Beauchamp C. and I. Fridovichi, 1971: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287.
  9. Bennet, J.H., E.H. Lee and H.E. Heggestad, 1984: Biochemical aspect of plant. Gaseous Air Pollutants and Plant Metabolism, M.J. Koziol and F.R. Whatley (Eds.) Butterworth England, 413-424.
  10. Bortier, K., K. Vandermerien, L. De Temmerman and R. Ceulemans, 2001: Growth, photosynthesis and ozone uptake of young beech(Fagus sylvatica L.) in response to different ozone exposures. Trees, 15, 75-82.
  11. Chanway, C.P. and V.C. Runeckles, 1984: The role of superoxide dismutase in the susceptibility of bean leaves to ozone injury. Canadian Journal of Botany, 62, 236-240.
  12. Coleman, M.D., J.G. Isebrands, R.E. Dickson and D.F. Kamosky, 1995: Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology, 15, 585-592.
  13. Evans, L.S., J.H. Adamski and J.R. Renfro, 1996: Relationship between cellular injury, visible injury of leaves, and ozone exposure levels for several dicotyledonous plant species a great smoky mountains national park. Environmental and Experimental Botany, 36, 229-237.
  14. Heath, R.L., 1980: Initial events in injury to plants by air pollutants. Annual Review of Plant Physiology, 31, 395-431.
  15. Laisk, A., O. Kull and H. Moldau, 1989: Ozone concentration in leaf intercellular air species is close to zero. Plant Physiology, 90, 1163-1167.
  16. Lee, J.C., S.H. Han, C.S. Kim, S.S. Jang and P.G. Kim, 2002: Physiological responses and ozone uptake of five Betula sp. exposed to ozone. Proceedings of the 2nd international workshop on advanced flux network and flux evaluation, AsiaFlux, 84-86.
  17. Lee, J.C., S.H. Han, S.S. Jang and Y.P. Hong, 2001: Ozone uptake and tolerance test of five tree species exposed to ozone. Plant Cell Biotechnology for Molecular Breeding. 163.
  18. Lidon, F.C. and F.S. Henriques, 1993: Oxygen metabolism in higher plant chloroplasts. Photosynthetica 29, 249-279.
  19. Mortensen, L. and O. Skre, 1990: Effects of low ozone concentrations on growth of Betula pubescens Ehrh., Betula verrucosa Ehrh. and Alnus incana (L.) Moench. New Phytologist, 115, 165-170.
  20. Nali, C., L. Guidi, F. Filippi, G.F. Soldatini and G. Lorenzini, 1998: Photosynthesis of two poplar coles contrasting in O3 sensitivity. Trees, 12, 196-200.
  21. Oksanen, E., G. Amores, H. Kokko, J. M. Santamaria and L. Karenlampi, 2001: Genotypic variation in growth and physiological responses of Finish hybrid aspen(Populus tremuloides P. tremula) to elevated tropospheric ozone concentration. Tree Physiology, 21, 1171-1181.
  22. Pitcher, L.H., E. Brennan, A. Hurley, P. Dunsmuir, J.M. Tepperman and B.A. Zilinskas, 1991: Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiology, 97, 452-455.
  23. Paakkonen, E., J. Vahala, T. Holopainen, R. Karjalainen and L. Karenlampi, 1996: Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch(Betula pendula) saplings exposed to low concentrations of ozone. Tree Physiology, 16, 597-605.
  24. Paakkonen, E., T. Holopainen and L. Kärenlampi, 1997: Differences in growth, leaf senescence and injury, and stomatal density in birch(Betula pendula Roth.) in relation to ambient levels of ozone in Finland. Environmental Pollution, 96, 117-127.
  25. Rao, M.V. and K.R. Davis, 2001: The physiology of ozone induced cell death. Planta, 213, 682-690.
  26. Sen Gupta, A., R.G. Alscher and D. McCune, 1991: Response of photosynthesis and cellular antioxidnats to ozone in Populus leaves. Plant Physiology, 96, 650-655.
  27. Shannon, J.G. and C.L. Mulchi, 1974: Ozone damage to wheat varieties at anthesis. Crop Science, 14, 335-337.
  28. Sharma, Y.K. and K.R. Davis, 1994: Ozone-induced expression of stress-related genes in Arabidopsis thalina. Plant Physiology, 105, 1089-1096.
  29. Sheng, W.S., B.I. Chevone and J.L. Hess, 1993: Photosynthetic inhibition and superoxide dismutase activity in soybean cultivars exposed to short-term ozone fumigations. Environmental Pollution, 80, 45-52.
  30. Sheng, Y., G.K. Podila and D.F. Karnosky, 1997: Differences in $O_3$-induced superoxide dismutase and glutathione antioxidant expression in $O_3$ tolerant and sensitive trembling aspen(Populus tremuloides Michx.) clones. Forest Genetics, 4, 25-33.
  31. Skarby L., E. Troeng and C.A. Boström, 1987: Ozone uptake and effects on transpiration, net photosynthesis, and dark respiration in Scotch pine. Forest Science, 33, 801-808.
  32. Smith, I.K., T.L. Vierheller and C.A. Thorne, 1988: Assay of glutathione reductase in crude tissue homogenates using 5,5'-dithibis(2-nitrobenzoic acid). Analytical Biochemistry, 175, 408-413.
  33. Tang, Y., B.I. Chevone and J.L. Hess, 1999: Ozone-responsive proteins in a tolerant and sensitive clone of white clover (Trifolium repens). Environmental Pollution, 104, 89-98. https://doi.org/10.1016/S0269-7491(98)00149-3
  34. Tepperman, J.M. and P. Dunsmuir, 1990: Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Molecular Biology, 14, 501-511.