=& 02-27-5C-1 FEAG3]=FA] 025 Vol27 No.SC
WA e By rhs ol-g3t
A =24 AN oA StaelE

Ao o] Y, FE A, H AW

0!

Web Proxy Cache Replacement Algorithms
using Object Type Partition

Soo-haeng Lee*, Hyeon-jac Doo*, Sang-bang Choi* Regular Memers
2 %

A A Sefoldast Aureld] 1x]5e], dizlate] L e ZHA| /‘1‘514 715457 ok o180l
ot el B} =] AHAlel= 2 LANS iﬁH AAFER W doEe 2 =R 4 Al AR
e A 9lermz 4 Aol EAshs AES oA daeigelzke °1’%i THA <8 A ANAE A7
FAHRE SlE AAEA Aok oo A %J_El%‘ée HeH7PIEal 3eds) vlelE3|Eg F ¥ 3
ve] Aegrl|Enks g, dds °1“ g 7= WHA7A Rk & EellA *?-EH:— %IE%S'Jr Ho]
E32g 2N §2 AE vehie F 7Y AAYEEE Atk A A 2udaA,
7H A2 stdeislel wiet HAs] £3AZck 5 HA dauEFaxe -84 AXTEE *P%?‘}E}- "Jﬂﬂl‘%?ﬂ"l

71 Bl AR 45w, HLNAE BRI EA BE ekl AAES ARH LR 83 Frt
Edo]a-=2] AlEHoldE A3l 3| EET) o] EESS SAHFOEM Al S w718t
ek

N

ABSTRACT

Web cache, which is functionally another word of proxy server, is located between client and server. Web
cache has a limited storage area although it has broad bandwidth between client and proxy server, which are
usually connected through LAN. Because of limited storage capacity, existing objects in web cache can be
deleted for new objects by some rules called replacement algorithm. Hit rate and byte-hit rate are general metrics
to evaluate replacement algorithms. Most of the replacement algorithms do satisfy only one metric, or sometimes
none of them. In this paper, we propose two replacement algorithms to achieve both high hit rate and byte-hit
rate with great satisfaction. In the first algorithm, the cache is appropriately partitioned according to file types as
a basic model. In the second algorithm, the cache is composed of two levels; the upper level cache is managed
by the basic algorithm, but the lower level is collectively used for all types of files as a shared area. To show
the performance of the proposed algorithms, we evaluate hit rate and byte-hit rate of the proposed replacement
algorithms using the trace driven simulation.

. Introduction WWW have low coefficients of size variation was
revealed by the study of Martin F. Arlitt R
The fact that objects of the same file type on other words, it means the fact that objects of the

* Qabist AAlEast e TE 9 W=9a 974 (sangbang@inha.ac.kr)
EEHE :010369-1204, F<=e)x} 1 20010 129 042
% o] EEE 20018 QlaojarEe) Aol 2)ald ATEIE. (INHA-22006)

399

R EA18}3]=2%] °02-5 Vol.27 No.5C

same type have similar sizes. In this paper, we
suggest two algorithms for web cache replace-
ment, the basic algorithm and the advanced
algorithm. The basic algorithm, which is referred
to as TYPE algorithm, partitions the whole cache
space into several sections to store objects of the
same file type instead of simply managing one
big cache space for all objects of various types
and sizes. The class is defined as the assemblage
of object types with similar file sizes, and each
class is assigned to a separate section that is
appropriately partitioned. The advanced algorithm,
which is called 2-LEVEL algorithm, has two-level
structure, ie., upper level cache (L1) and lower
level cache (L2). The L1 cache is managed by
the TYPE algorithm. However, the lower level 12
cache is collectively used for all types of files as
a shadow cache.

Multimedia objects are sometimes several tens
of megabytes in size. When they make an entry
into the limited cache storage, they can sacrifice
thousands of small-sized documents. And those
removals usually result in low hit rates. In the
TYPE algorithm, sections of reasonable space are
assigned exclusively for such small objects to
guarantee higher hit rates. For examples, one
section is assigned for document class (text, html)
and the other section is for graphic class (gif,
bmp). In each partitioned section, LRU (least-
recently used) algorithm, which removes the
object that has been unused for the longest time
from a cache, can be used. LRU algorithm was
already proved to have very high byte-hit rate in
usual file cache system. Since objects in the same
class are similar in size and assigned to the same
section in proposed TYPE algorithm, LRU
replacement algorithm can provide high byte-hit
rate for a given amount of space. A different
replacement algorithm can be wused for each
section to optimize the byte-hit rate.

Separate sections are also assigned for classes
of large objects to obtain high byte-hit rates. In
general, the high hit rate for each class provides
a high byte-hit rate. We also introduce two-level

cache structure to enhance the performance of

400

TYPE algorithm. In a certain circumstance, small
area can be assigned to a class. However, when
various objects are suddenly referenced by clients,
the corresponding section will have very high
miss rate because of the limited area. In the
proposed 2-LEVEL algorithm, an extra space is
provided as the shared area to accommodate those
removed objects from the L1 cache. The L2
cache is collectively used for all types of files as
a shelter space. The goal of this paper is to
desi‘gn algorithms to improve performance in
terms of both hit rate and byte-hit rate. In the
proposed algorithm, the hit rate is obtained from
partitioning of cache and the byte-hit rate is
improved by LFU-DA (least-frequently used with
dynamic aging) algorithm, which removes the
object that has the smallest key value obtained
from the frequency of references and an aging
factor in each partitioned section @

This paper is organized as follows. We explain
characteristics of HTTP and performance of cache
replacement algorithm for proxy server in Section
2. In Section 3, related researches about replace-
ment algorithms and web access characteristics are
discussed. We show limitations of current replace-
ment policies and propose two replacement
algorithms to overcome those limitations in Web
proxy cache in Section 4. In Section 5, we
explain trace driven simulations and compare the
performance of proposed algorithms with other
ones. Finally, we conclude our paper in Section

6.

. Preliminaries

HTTP is the object unit transfer protocol. Thus,
the entire object is sent in a session since whole
data are regarded as one unit. Partial transfer
function doesnt exist in HTTP. This simplicity of
HTTP contributes to popularization of WWW ©,
Since its impossible to transfer a part of object,
storage and replacement of a page unit with fixed
size have no meaning in this circumstance. Thus,
in proxy server, it is inevitable to employ a

cache management policy based on variable-sized

/A Bl EEEE o] 43 4 ZgA A9 dA dzeE

object instead of cache management for fixed-
sized page.

The hit rate has employed as a measure of the
performance of the memory hierarchy and is
defined as the fraction of memory accesses found
in the upper level. Thus cache hit rate is
generally used as the most popular metric to
evaluate the performance of cache structure or
replacement algorithm. And this concept can also
be used to measure the performance of web
cache replacement algorithm for requested objects.
In proxy server, the hit rate is defined as the
number of objects found in the cache as a
percent of total requested objects since HTTP is
the transfer protocol in object unit.

However, since the stored objects in proxy
cache have variable sizes, another performance
metric has to be employed to evaluate the web
cache operation properly. That is, we need
byte-hit rate and is defined as the number of
bytes that the proxy cache served directly as a
percent of the total number of bytes for all
requests. We can intuitively realize that these two
performance metrics have the same value for
general file system or database cache because
page or data block is the unit of data with a
fixed size.

Il. Related Researches

Data cache in database or file system has been
a subject of many studies. Along the development
of WWW, traditional cache algorithms have been
adopted for the proxy cache. And a great deal of
effort has also been made to obtain more suitable
algorithms for web objects. Among earlier studies,
S. Williams™ classified the existing cache algori-
thms by sorting keys used for the decision of
removal order. The four basic sorting keys are
considered in the classification of cache replace-
ment algorithm; the size of a cached document in
bytes (size), the time that a document entered the
cache (etime), the time of last document access
(atime), and the number of document references
(nref). Table 1 shows the summary of four

Table 1. Removal algorithms defined by sorting key.

Algorithm Sorting Key Removing Order

SIZE | Size of a cached document in bytes Largest file

FIFO |Time of document entered the cache| Oldest entered file

LRU Time of last document access Least recently used file

LFU Number of document references Least referenced file

representative replacement algorithms classified by
sorting key.

The SIZE algorithm that uses the size of
document as a sorting key can increase the
number of objects in cache by making space for
small files. It removes big-sized file first as
shown in Table 1. Moreover, most user requests
make references for small-sized files as shown in
Figure 1. Thus, SIZE algorithm that sacrifices a
big file for many small files can have higher hit
rate.

The performance metrics of cache replacement
algorithms are hit rate and byte-hit rate as we
explained in Section 2. The SIZE algorithm has
best performance in hit rate as we explained
above. However, it has very poor performance for
byte-hit rate since one miss of a large object
generates so many byte misses. Therefore, we
have to design a new replacement algorithm to
have a close value to SIZE algorithm for the case
of hit rate.

The characteristic of web accesses is very
similar to the access pattern of main memory. In
other words, it has temporal locality; if an object
is referenced, it will be referenced again soon.
Thus, the object replaced should be the one that

2 .
o
£
!]
<
o 4
z
i ls o
5000 15000 20000

10000
URL_Size_in_bytes

Fig. 1. Distribution of document sizes in Virginia Tech
trace data.

401

223 =53] 02-5 Vol.27 No.5C

has been unused for the longest time. The LRU
algorithm, which uses time of last document
access as a sorting key, shows high byte-hit rate
since it keeps those objects that can be referenced
soon with high probability without regard to the
size of objects *. Therefore, we have to design a
new replacement algorithm that has a close value
to LRU algorithm for the byte-hit rate.

The LFU (least frequently used) algorithm
requires that the object with the smallest reference
count be replaced. The reason for this selection is
that an actively used object should have a large
reference count value. However, this algorithm
suffers from the situation in which an object is
used heavily during the initial phase, but then is
never used again. Since it was used heavily, it
has a large count and remains in a cache even
though it is no longer needed @

V. Proposed Replacement
Algorithms

4. 1 Characteristics of File Access
Pattern on WWW

The fact that WWW objects have variable sizes
has been found in many preceding studies. And
the variable sizes stem from diverse kinds of file
type provided by servers. For an extreme
example, several hundred bytes of HTML
document file can be compared with several
hundred megabytes of MPEG multimedia file.

The characteristic of web objects was studied
more systematically by Martin F. Arlitt M n
1996. In this paper, the class is defined as the

assemblage of some related object types with

Table 2. Classification of documents by file types.

Class File Type
HTML Ahtml file types
Images .gif, .jpeg, or .xbm file types
Sound .au or .wav file types
Video .mpeg, .avi, or .mov file types
Dynamic .cgi or .perl file types
Formatted .ps, .dvi, or .doc file types

402

Table 3. Coefficient of variation of web documents
from Saskachewan and Calgary University
traces.

Saskachewan data

Html Image Sound Video
Mean Size| 5,447 5,980 84,154 13,602,176
CoV 2.19 2.77 2.62 229

Dynamic | Formatted { Others | All Files

Mean Size] 3,969 36,055 22,441 5,970
CoV 291 0.08 11.30 11.19

Calgary data

Html Image Sound Video

Mean Size| 3,929 13,971 258,196 | 496,992
CoV 1.86 3.95 1.49 1.60

Dynamic | Formatted | Others | All Files

Mean Size| 4,702 305,444 | 27,112 13,997
CoV 1.26 2.77 2.77 8.01

(CoV : Coefficient of variation)

similar file sizes. Tables 2 and 3 show CoV
(Coefficient of Variation) values classified by file
types for the web documents from the two
university trace data.

From Table 3, we can find that the CoV of
each file type has small value although the CoV
of all files has quite large value. In other words,
we can say that files that are classified into the
same class are similar in size. And it is a very
important characteristic ~ for the proposed
replacement algorithms since we partition cache
space into sections of appropriate sizes according

to file classes.

4. 2 TYPE Algorithm

Partitioning of cache has already been used to
expand the bandwidth between CPU and memory.
In most high performance microprocessors, the
cache is partitioned into two sections, ie.,
instruction cache and data cache, according to
their usage. Our approach to new replacement
algorithm also partitions the proxy cache.
However, we partition cache space into several
sections on the basis of file type instead. The
logical ground for our approach is that each

partition can provide a space of reasonable size

SE/AA el $EITE o8 4 ZHA AAY AA daelE

for the class assigned to it. And the LRU
algorithm, which has high performance for objects
of similar size, is employed for each section. As
a result, the proposed algorithm can achieve both
very high hit rate and byte-hit rate. In this paper,
partition and section will be used interchangeably.
To the best of our knowledge, there is no such
replacement algorithm proposed thus far. Figure 2
shows the visual description of the proposed
replacement algorithm.

The proposed strategy is simply referred to as
TYPE algorithm in this paper since the cache is
pattitioned according to file type. And, in order
to employ this TYPE replacement algorithm, we
must consider following several factors; the
number of partitioned sections, the size of each
section, file types assigned to each section, and
replacement algorithm used in each section.

The procedure of TYPE algorithm can be
described in detail as follows. The classification
of the file types that will be located in each
partition has to be formed. Some related file
types can be grouped into 7 classes such as
graphic, text/html, audio, video, CGI, formatted,
and unknown. And each class is assigned to one
section exclusively. The size of each partition can
be derived from the amount of transfers in bytes

for responses of each class as follows.

transfer ., ; = request vate per second . i
* mean transfer size ., ;

The initial partition size for class i can be
assigned according to its popularity or an average
of transfer ..; values for some time. The
advantage of using class-based partition is that
big-sized files like sound or multimedia do not
delete many small-sized files unconditionally
unlike SIZE algorithm.

TYPE algorithm can guarantee high hit rate
close to that of SIZE algorithm because
reasonable cache spaces are always allocated to
the classes of small-sized files like text/html. The
LRU algorithm removes the object that has not
been used for the longest time from the
corresponding section. The LRU algorithm was

Requested object By File type Web cache

S-S
< ““

Class1 : graphic

Class2 : text/html

Class3 : audio

Class4 : video
{ LRU algorithm

Class5 : cgi

Class6 : formatted

Class7 : unknwon

Fig. 2. Logical structure and operation flowof web proxy
cache using TYPE replacement algorithm.

already proved to have very high hit rate in
conventional file cache systems. And objects in
the same class are similar in their sizes and
assigned into the same partition. The maximized
hit rate in each partition for objects of similar
sizes produces the optimal byte-hit rate in general,
even though it is not always guaranteed. And the
division ratio for each partitioned section can be
determined by accumulated decision factors when
they reach critical points, or periodically.

The realization of the proposed TYPE algorithm
is intvitively clear and not difficult. Cache
manager keeps the list of cached objects and
searches the list when a new request comes in. If
the requested object is not found, a cache miss
occurs and the manager directly requests the
object from a web server. This process causes a
file transfer and the manager is able to know the
file type. Transferred file must be located in a

TYPE Algorithm
Input: Requested object from a client;
Output: Retrieved object from a cache;
Determine the class of requested object;
if the new object is not in the corresponding section;
then retrieve the requested object from the web server;
if there is no enough room in the section
then while (no enough room for the new object)
Remove the LRU object;
Add the new object to the corresponding section;
Return requested object to the client;

Fig. 3. Pseudo code describing TYPE algorithm.

403

A8 =54 "02-5 Vol.27 No.SC

section that is responsible for its class. If the
section needs to make a space for the newly
entered object, the LRU algorithm can be applied
to the section. The TYPE algorithm can be
described by pseudo code as shown in Figure 3.

4. 3 2-LEVEL Algorithm

In the second algorithm, we enhance TYPE
algorithm by employing two-level cache structure
and an individual replacement algorithm for each
level. In the TYPE algorithm, a small area can
be assigned to a class in a dynamic web
environment. When various objects of the same
class are suddenly referenced by many clients in
a local domain, the corresponding section will
create very high miss rates because of the limited
space assigned to the class. In the proposed
2-LEVEL algorithm, an extra space called L2
cache is provided as the shared buffer to
accommodate those objects removed from the L1
cache. The L2 cache is collectively used for all
types of files as a shared area. Such a cache is
often referred to as a victim cache in a
conventional cache of microprocessor system.

In the proposed 2-LEVEL algorithm, the hit rate
is obtained from partitioning of cache according to
object classes in the L1 cache, and the byte-hit
rate is improved by the frequency- based
algorithm with an dynamic aging factor employed
in both L1 and L2 caches. The proposed
algorithm can be explained in detail as follows.

Two-level structure: The cache is composed of
two levels; the L1 cache is appropriately
partitioned for each file class and objects of the
same class are assigned into the corresponding
portion of the L1 cache as in the TYPE
algorithm. The L2 cache is the combined cache
that accepts all types of files in it.

Type-based partitioning in the L1 cache: The L1
cache is partitioned into seven partitions for the
same number of classes, i.e., graphic, textfhtml,
audio, video, CGI, formatted, unknown. As
revealed by the study of Martin F. Arlitt w,
objects of the same file type on WWW have low

coefficients of size variation. In other words,

404

objects of the same type have similar sizes. There-
fore, if sections of reasonable space are assigned
for each class, it guarantees high hit rates.

LFU-DA for each section of L1 cache and for
L2 cache: We employ the least-frequently used
with dynamic aging (LFU-DA) algorithm for each
section of L1 cache since it shows great
performance for byte-hit rate. LFU-DA is also
used in L2 cache.

The LFU policy maintains a frequency count
for each object in the cache, and replaces the
least frequently used object. In the LFU policy,
the objects with initial high access counts can
kept in the cache for a long time and pollute the
cache, even though they are not popular any
more. The LFU-DA is also frequency-based policy
and retains the most popular objects regardless of
its size . However, to solve the cache pollution
problem, the LFU-DA calculates the key value of
an object using the frequency count and the
inflation factor for aging objects. The key value
for each object i, key[i], can be obtained from

the following formula.

keyiry-pali]l = cos H i]* frequency count il

+ inflation factorli],

where, the cost[i] is the cost to bring object i,
the frequency count [i] is the reference count of
the object that has been accumulated since it
entered the cache, and the inflation factor[i] is the
key value of the previous object that has been
replaced by this object (i.e., object i). If object i
has not replaced any object when it enter the
cache, inflation factor[i] is set to 0. The LFU-DA
policy may prove useful in caching environment
where the frequency is an important characteristic,
and achieve high byte-hit rates.

On the other hand, the GreedyDual-Size (GDS)
is size-based algorithm and replaces the object
with the smallest key value for a certain utility
function, where the function considers cost
associated with bringing object, object size, and
aging factor in the calculation of key values B,

However, it does not take into account how many

T/ A Bl 2RFE ol 4T 9 ZA] AAE oA dzelE

times the object was accessed in the past.
Greedy-dual size with frequency (GDSF) considers
the reference frequency in the utility function to
enhance the performance of GDS . The GDSF
calculates the key value for each object i as
follows.

keycpsrl i) = (cos 1] * frequency count] i)/sizel i]
+ inflation factor] ,

where the size[i] is the size of object i in bytes.
Both GDS and GDSF provide very high hit rate
since they are size-based algorithm.

In the proposed 2-LEVEL algorithm, we
employ the LFU-DA policy to replace an object
in each section. And each section is assigned to
one class that has objects with similar sizes.
Thus, the value of keyiry.pafi] is very similar in
relative size to that of keygpse[i] in each section.
In the GDSF policy, the sizefi] does not play an
important role in calculating values of keygpsr for
objects of similar sizes. In other words, the order
of LFU-DA key values is very similar to that of
GDSF key values for the whole objects of one
section. As a result, the 2-LEVEL can achieve
very high hit rate and byte-hit rate simultaneously.

Figure 4 describes the logical cache structure
and operation of web proxy cache that employs
2-LEVEL replacement algorithm. In the first step,

Reauested Object
(nttp://www.abc.com/xyz.G'F)

\ ject:
(“LFTJZD“A;]
formatted Q
unknown . \STEP 8

Deleted Object

Fig. 4. Logical structure and operation flow of web
proxy cache using 2-LEVEL replacement
algorithm.

2-LEVEL Algorithm
Input: Requested object from a client;
Output: Retrieved object from a cache;
Determine the class of requested object;
if the new object is not in the corresponding section in L1 // L1: upper level cache
then if the new object is not in L2 jf L2: lower level cache
then retrieve the requested object from the web server;
if there is no enough room in the section of L1
then while (no enough room for the new object in the section of L1}
Select the object with the smallest key using LFU-DA;
if there is no enough room in L2 for the object selected from L1
then while (no enough room in L2 for the object from L1)
Remove a object with the smallest key in L2 using LFU-DA;
Transfer the selected object from L1 to L2;
Add the new object to the comesponding section;
Return requested objected to the client;

Fig. 5. Pseudo code describing 2-LEVEL algorithm

the newly entered object is stored into the
corresponding partition of the L1 cache according
to its file class. In the next step, when there is
no enough room for the newly entered object, the
replacement algorithm (LFU-DA) is applied to the
corresponding section of the L1 cache in order to
prepare a space for the new object. Then, the
object removed from the L1 cache is stored into
the L2 cache if there is an enough space in L2
cache. If the L2 cache doesnt have enough space
to store the removed object, the LFU-DA
algorithm is employed again to make a space.

If an object requested by a client host has been
found in the L2 cache, the object is sent to the
client and, at the same time, moved to the
corresponding section of the L1 cache. The L2
cache is used as a shared area for the needs of
an additional space when user requests are
concentrated in a certain file type or when the
spaces of the L1 cache is not adequately assigned
for some classes of objects. In other words, the
L2 cache prevents the high miss rate caused by
conflicts of objects in a small space. The
2-LEVEL algorithm can make a maximal
utilization of cache space. The procedure of the
2-LEVEL algorithm can be described by pseudo
code as shown in Figure 5.

V. Simulations and Analyses

We use Saskachewan and Calgary trace data
available in a public domain of Internet to

405

FHEAI 8] = 8R] "02-5 Vol.27 No.SC

improve the reliance on simulations instead of

using our own trace data ",

Saskachewan: It includes the valid 2,165,415
requests among a total of 2,408,625 accesses
during 214 days from June 1. 1995 through
December 31, 1995.

Calgary: 1t includes the valid 567,795 requests
among a total of 726,739 accesses during 353
days from October 24. 1994 through October
11, 1995,

The size-based policies have better hit rates
than frequency-based policies. And, among
size-based policies, the GDSF algorithm has better
performance than SIZE in hit rate. On the other
hand, the frequency-based policies provide better
byte-hit rates than size-based policies. The
LFU-DA achieves higher byte-hit rate than any
other frequency-based policies such as LFU. In
the 2-LEVEL algorithm, LFU-DA or LRU can be
used to choose a victim object in each section

since both of them take into account object

access times and are not size-based policies.
However, we employ the LFU-DA for the
2-LEVEL algorithm to compare its performance
with the TYPE algorithm, which already has used
LRU policy.

We have used the Visual C++ to make the
simulator and MS Excel to draw the following
graphs. We have performed excessive simulations
to obtain the dependable results about performance
of web cache replacement policies. We have

simulated the proposed TYPE, 2-LEVEL

Table 4. Initial size of each partition for simulations of
TYPE and 2-LEVEL algorithms on Sask-
achewan and Calgary trace data.

Saskachewan data

Html |Images| Sound | Video |Dynamic|Formatted] Other
TYPE [892M {644M | 27TM | 46M | 77M | 2M | 72M
2-LEVEL| 625M | 450M | 18M | 32M | 54M M 50M

Html |Images| Sound | Video |Dynamic|Formatted] Other
TYPE | 144M | 546M | 14M | 12dM | IM | 237M | 24M
2-LEVEL| 100M | 380M | 10M | 86M | IM | 165M | 18M
(M: Megabytes)

406

algorithms and existing algorithms that have best
performance in each metric using the two trace
data, i.e., Saskachewan and Calgary trace data. It
has been shown that the GDSF algoritbm showed
the best performance in the hit rate, and the
LFU-DA algorithm showed the best performance
in the byte-hit rate. In the following figures, we
will show the changes of hit rates, byte-hit rates,
and the size of the lower level cache (L2) over
the sequence of user request. We will also give
in depth analyses about the simulation results.

We allocate appropriate area to each section
according to the amount of transfers in bytes per
second for responses of the corresponding class.
In simulations, the initial partition size for class i
is assigned according to the average of
transfer .. ; values for the first 1000 requests. We
allocate the initial size for each section as shown
in Table 4 for Saskachewan and Calgary trace
data. The sizes of L2 cache are fixed as 530
megabytes for Saskachewan data and as 330
megabytes for Calgary data, respectively.

Figure 6 shows the variation of hit rates along
the sequence of user requests in the Saskachewan
and Calgary web traces. From the two graphs, we
know that the GDSF algorithm has the best
performance for the hit rate just as we have
expected. However, the LFU-DA algorithm
provides the worst performance for it. The
proposed TYPE algorithm and 2-LEVEL algorithm
achieve much better performance in the hit rate
than the LFU-DA policy. Among the algorithms,
the 2-LEVEL algorithm provides better
performance in terms of hit rate. In some
situations, the 2-LEVEL algorithm generates
higher hit rate than the GDSF. In general, the
2-LEVEL shows smoother curves than the other
policies. This stems from the fact that a proper
area is provided to each partition for the assigned
class and the objects in the partition have similar
sizes to achieve satisfactory high hit rate.
Especially, the 2-LEVEL algorithm provides a
back-up space that can be used for any class.
And this section provides a kind of shelter area
for those objects of a class that become popular

=E /WA e BEEhE o] 83 4 ZHA

AMAe oA daelE

0.42
s 2% Yos SN A
- MW
s B’E‘e—s\E\n \”‘\M—A\A
g 0.3 ‘EI"'?/B‘R o A
£ W hN
0.3%
—o—GDSF
0.32 | -—LFUDA
——TYPE
—e—2AEVELL T U S PR
03
1 3 65 7 9 11 131 17192 8 %

Number of User Requests x 20000

(a) Hit rate for Saskachewan

P
RS
RSN

——GDSF
—e—FU-DA
——TYPE
——2ABVEL e

13 6 7T 9 1M 13 1517 92 BB
Number of User Requests x 20000

o
®

HitRate
o
8

f=1
8

o
w

(b) Hit rate for Calgary

Fig 6. Hit rates for two workloads Saskachewan the
Calgary over the sequence of requests.

and suddenly referenced by many client hosts.
Figure 7 shows the variation of byte-hit rates
over the sequence of user requests using the same
two traces. The LFU-DA algorithm shows the
best byte-hit rates as we have expected. And the
GDSF algorithm gives the worst performance in
terms of the byte-hit rate among four replacement
policies. The TYPE algorithm provides byte-hit
rates that are between those of LFU-DA and
GDSF. However, the byte-hit rates of the
2-LEVEL algorithm are almost equivalent to those
of LFU-DA algorithm. Especially, when user
requests are concentrated on objects whose
average sizes are large during relatively short

042
0.4
£
5 038
£
£ 03
1]
——GDSF
0.34 —a—FU-DA
—a—TYPE
—e—2-LEVEL
032 S
T3 5 7 9 11 131517 1821 8%
Number of User Requests x 20000
(a) Byte-hit rate for Saskachewan
0.41 i
04 PR i
0.39 ,
|

Byte Hit Rate
o o
<« ®

;
} 5

o
8

—o—GDSF
-8 FU-DA
—4—TYPE
——2- EVEL e

13 67T ¢ 1 1315171920 23835
Number of User Requests x 20000

o
8

=3
®

(b) Byte-hit rate for Calgary

Fig. 7. Byte-hit rates for two workloads Sask-
achewan and Calgary over the sequence of
requests.

period of time, the 2-LEVEL algorithm achieves
outstanding performance. Even for small-sized
objects, it provides an excellent performance
although the improvement is not very remarkable.
The high byte-hit rates of the 2-LEVEL algorithm
can be explained by the following two reasons.
First, the cache pollution problem in each
partition is resolved by employing the aging
factor in the replacement algorithm. Second, a
shelter area is provided for some large objects
that are removed from their original sections
because of the conflict with each other. And
those large objects saved in the shelter area
provide very high byte-hit rates.

401

Size of Each Section (MBytes)
2885888888 E8

—&—(mages
—a—Sound
——\Video
—— Dynamc
—o— Formatied
—+— Other

1357 91N 1BBITWYA RS
Number of User Requests x 20000

(a) The size of each section for Saskachewan

—¢—Him
—8—(mages
—&— Sound
——Video
—— Dynanic
—o— Formatted
—— COther

8 8 8 8 8 8

Size of Each Secton (MBytes)

8

=3

135791 BBENTBABSB
Number of User Requests x 20000

(b) The size of each section for Calgary

Fig. 8. Variations of the size of each section for
Saskachewan and Calgary trace data.

Figure 8 shows the variations of the size for
each section on Saskachewan and Calgary trace
data. From two graphs of the figure, we can find
the fact that there is very little variation from the
initial allocated size for each class along the
sequence of requests. This fact shows that the im-
plementation of the proposed 2-LEVEL algorithm
can be very simple. Even if we fix the size of
each section using statistical data for some time
period, a competitive performance can be obtained
from the proposed algorithm. Figure 9 depicts the
dynamical distribution of each area occupied by
filess in L2 cache. In Saskachewan trace data,
HTML and image files take the most of the L2

408

T

Iy A
= O
S8 e Ra Ay JaVA V.
08 A A L
i N
8%40 7 —4~Himl
e W W -8 [vages
4 g ——Sound
o0 —%—Video
35 —— Dynamc
£ 82 —o— Formatted
& > ——Other
a—).D
a

1 357 91N 1B3BI17T1920R3D

Nunber of User Requests x 20000

(a) The size of L2 cache for Saskachewan

0

0 g
: 7 [*3
IArwWA [
80g LA d \o A F
gJ |4 V L W T e Hm
?&Em —8—|mages
2] ﬁ —&— Saund
5 Oy ~4—Video
§5 —— Dynamic
t B 9 —o— Famatied
§5‘ ~_i| ——Cher
& o f X

o

135 791 13BI17T192 33
Nurber of User Requests x 20000

(b) The size of L2 cache for Calgary

Fig. 9. Variations of the size of L2 cache for
Saskachewan and Calgary trace data.

space. In Calgary trace, HTML files occupy
relative small area, but image files take up most
space.

VI. Conclusions

In a cache, the performance of replacement
algorithm is often measured by the hit rate. In
proxy server, the hit rate is defined as the
number of objects found in the cache as a
percent of total objects requested since HTTP is
the transfer protocol in object unit. However, the
web cache is different from traditional file cache
or virtual memory system. The web cache must
deal with objects of variable sizes ranging from

=E/NA sl 2L o 4T A ZHA AMAY oA dzE

several hundreds of bytes to several tens of
megabytes in 'WWW. Thus, the byte-hit rate,
which is a percent of the total number of bytes
that the proxy cache directly serves for all
requests, is also used for the proper evaluation of
cache performance. Since it’s impossible to
transfer a part of object in HTTP, it is inevitable
to employ a cache management policy based on
variable-sized object in proxy server.

In this paper, we propose two novel replacement
algorithms to achieve both high hit rate and
byte-hit rate with great satisfaction. In the
proposed TYPE algorithm, sections of reasonable
space are assigned exclusively for each class of
objects to guarantee high hit rates. Since objects in
the same class are similar in size and assigned to
the same section in proposed TYPE algorithm,
LRU replacement algorithm can also provides high
byte-hit rate for a given amount of cache space. In
the proposed 2-LEVEL algorithm, an extra L2
cache is provided as the shared area to
accommodate objects removed from the L1 cache.
The L2 cache is collectively used for all types of
files as a shelter area. In the 2-LEVEL algorithm,
the hit rate is obtained from partitioning of cache
and the byte-hit rate is improved by LFU-DA
replacement policy.

From the simulations, we know that the GDSF
algorithm has the best performance for the hit
rate, but the LFU-DA algorithm provides the
worst performance. Whereas, the LFU-DA
algorithm shows the best byte-hit rates, but the
GDSF algorithm gives the worst byte-hit rates
among four replacement policies. The proposed
TYPE and 2-LEVEL algorithms provide byte-hit
rates that are between those of LFU-DA and
GDF. However, the hit rates and byte-hit rates of
the 2-LEVEL algorithm are almost equivalent to
those of GDSF and LFU-DA, respectively. In
summary, the 2-LEVEL algorithm achieves
outstanding performance in most cases.

References

[1] M. F. Arlitt and C. L. Williamson, “Web

server workload characterization: The search
for invariants,” Proc. of the ACM
SIGMETRICS, pp.126-137, Philadelphia, PA,
ACM, Apr. 1996.

[2] M. Arlitt, L. Cherkasova, J. Dilley, R.
Friedrich and T. Jin, “Evaluating content
management techniques for web proxy
caches,” ACM SIGMETRICS Performance
Evaluation Review, vol. 27, no. 4, pp. 3-11,
March 2000.

[3] T. Bemers-Lee, R. Fielding, and H. Frystyk,
Hypertext transfer protocol - HTTP/1.0, RFC
1945, May 1996.

[4] S. Williams, M. Abrams, C. R. Standridge, G.
Abdulla, and E.A. Fox, “Removal policies in
network caches for world wide web
documents,” ACM SIGCOMM 96, pp.293-
305, Aug. 1996.

[S] P. Cao and S. Irani, “Cost-aware WWW
proxy caching algorithms,” Proceedings of the
1997 USENIX Symposium, pp.193-206, Dec.
1997.

[6] A. Silberschartz and P. B. Galvin, Operating
system concepts, The 5th edition, Addison-
Wesley Publishing Company, Nov. 1998.

0| %= &li(Soo-haeng Lee) Can
f 20000 At AREAT
| s
20024 VslEkL AREAT
SHalAIAD.

<FRypop AFE HEZ,
AT = vesz

Ei R b
Doo) 34
| 19953 =x|fstw AoAEZ
REIGA)
20010 Qskeska -zt
44b

20004 - @A) LGAA a4l
AT AT S/W 2
o 5%

TRl e TF, AFE] viES=, 5T F
Al Z2®F | Web Cache Algorithms

408

FFEAIE 3] =8 2] "02-5 Vol.27 No.5C

%| A} 2KSang-bang Choi) A3zl
19813 grekdslw A=l
(XD University of

Washington(*Ap
1990\d University of
Washington(2}Ap
1981 ~ 19861 LG A HFA

& 5

19910 ~ A} sk AARgast w4
<FHARop AFE T2, AFE VIEY=, MY 2
2rA]2] A=), Fault-tolerant computing

410

