DOI QR코드

DOI QR Code

TEM Observations of Chemosynthetic Bacteria in the Deep-sea Hydrothermal Vents and Seep Organisms

  • Kim, Dong-Sung (Marine Environment and Climate Change Laboratory, KORDI) ;
  • Ohta, Suguru (Ocean Research Institute, University of Tokyo)
  • Published : 2002.09.30

Abstract

Symbiosis of chemoautrophic bacteria with the members of hydrothermal vent and cold seep communities in the deep-sea were examined by histology using transmission electron microscopy; Bathymodiolus spp. from Sagami Bay, the Iheya Ridge and the North Fiji Basin; and Ifremeria nautilei from the North Fiji Basin. Two species of Bathymodiolus, each from Sagami Bay and the Iheya Ridge harbored methane-oxidizing symbionts within their gill tissues. Vent gastropod Ifremeria nautilei from the hydrothermal vents of the North Fiji Basin housed two types of symbionts; one sulfur-oxidizing type and the other methane-oxidizing type. The occurrence of chemosynthetic symbionts in these organisms were expected before-hand based on the ecological observations of their habit. The other members of these groups from world oceans and the recent advances in the symbiosis of the vent and seep communities were reviewed.

Keywords

References

  1. Bannister, L.H. 1979. The interactions of intracellular Protista and their host cells, with special reference to heterotrophic organisms. Proc. Royal Soc. London, B204, 141-163.
  2. Belkin, S., D.D. Nelson, and H.W. Jannasch. 1986. Symbiotic assimilation of $CO_2$ in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol. Bull. Mar. Biol. Lab., Woods Hole, 170, 110-121. https://doi.org/10.2307/1541384
  3. Cavanaugh, C.M. 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature, 302, 58-61. https://doi.org/10.1038/302058a0
  4. Cavanaugh, C.M. 1985. Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. Biol. Soc. Wash., 1985(6), 373-388.
  5. Cavanaugh, C.M., S.L. Gardiner, M.L. Jones, H.W. Jannasch, and J.B. Waterbury. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, 213, 340-342. https://doi.org/10.1126/science.213.4505.340
  6. Cavanaugh, C.M., P.R. Levering, J.S. Maki, R. Mitchell, and M.E. Lidstrom. 1987. Symbiosis of methanotrophic bacteria and deep-sea mussels. Nature, 325, 346-348. https://doi.org/10.1038/325346a0
  7. Childress, J.J., C.R. Fisher, J.M. Brooks, M.C. Kennicutt II, R.R. Bidigare, and A.E. Anderson. 1986. A methanotrophic marine molluscan (Bivalvia: Mytilidae) symbiosis: mussels fueled by gas. Science, 233, 1306-1308. https://doi.org/10.1126/science.233.4770.1306
  8. Comita, P.B., R.B. Gargosian, and P.M. Williams. 1984. Suspended particulate organic material from hydrothermal vent water at 21. Nature, 307, 450-453. https://doi.org/10.1038/307450a0
  9. Endow, K. and S. Ohta. 1989. The symbiotic relationship between bacteria and a mesogastropod snail, Alviniconcha hessleri, collected from hydrothermal vents of the Mariana Back-Arc Basin. Bull. Jap. Soc. Micro. Ecol., 3, 73-82. https://doi.org/10.1264/microbes1986.3.73
  10. Felbeck, H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science, 209, 336-338.
  11. Felbeck, H., J.J. Childress, and G.N. Somero. 1981. Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature, 293, 291-293. https://doi.org/10.1038/293291a0
  12. Felbeck, H., J.J. Childress, and G.N. Somero. 1983. Biochemical interactions between molluscs and their algal and bacterial symbionts. p. 331-358. In: Environmental biochemistry and Physiology, ed. by P.W. Hochachka. The Mollusca, Vol. 2. Academic Press, NY.
  13. Fiala-Medioni, A. 1984. Mise en evidence par microscopie electronique a transmission de l'abondance de bacteries symbiotique dans la branchie de mollusques bivalves de sources hydrothermales profondes. Comptes Rendu hebd. Seanc. Acad. Sci., 298, 487-492.
  14. Fiala-Medioni, A., A.-M. Alayse, and G. Cachet. 1986. Evidence of in situ uptake and incorporation of bicarbonate and amino acids by the hydrothermal vent mussel. J. Exp. Mar. Biol. Ecol., 96, 191-198. https://doi.org/10.1016/0022-0981(86)90242-X
  15. Fisher, C.R., J.J. Childress, A.J. Arp, J.M. Brooks, D. Distel, J.A. Favuzzi, H. Felbeck, R. Hessler, K.S. Johnson, M.C. Kennicutt II, S.A. Macko, A. Newton, M.A. Powell, G.N. Somero, and T. Soto. 1988. Microhabitat variation in the hydrothermal vent mussel, Bathymodiolus thermophilus, at Rose Garden vent on the Galapagos Rift. Deep Sea Res., 35, 1769-1791. https://doi.org/10.1016/0198-0149(88)90049-0
  16. Giere, O. and C. Langheld. 1987. Structural organization transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol., 93, 641-650. https://doi.org/10.1007/BF00392801
  17. Hashimoto, J., K. Fujikura, and H. Hotta. 1990. Observations of deep sea biological communities at the Minami-Ensei Knoll. JAMSTEC Deep. Res., 6, 167-180.
  18. Hessler, R.R. and W.M.Jr. Smithey. 1983. The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. p. 735-770. In: Hydrothermal Process at Seafloor Spreading Centers, eds. by P.A. Rona, K. Bostrom, L. Laubier, and K.L. Jr. smith. NATO Conference Series IV, Plenum Press, New York.
  19. Higgins, I.J., D.J. Best, R.C. Hammond, and D. Scott. 1981. Methane-oxidizing microorganisms. Micro. Rev., 45, 556-590.
  20. Jannasch, H.W. and C.O. Wirsen. 1979. Chemosynthetic primary production at east-Pacific seafloor spreading center. Biosciences, 29, 592-598. https://doi.org/10.2307/1307765
  21. Kennicutt, II, M.C., J.M. Brooks, R.R. Bidigare, R.R. Fay, T.L. Wade, and T.J. Mcdonald. 1985. Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature, 317, 351-353. https://doi.org/10.1038/317351a0
  22. Laubier, L. and D. Desbruyeres. 1984. Les oasis du fond des oceans. La Recherche, 15, 1506-1517.
  23. Le Pennec, M. and A. Hily. 1984. Anatomie, structure et ultrastructure de la branchie d'un Mytilidae des sites hydrothermaux du Pacifique Oriental. Oceanologica Acta, 7, 517-523.
  24. Le Pennec, M. and D. Prieur. 1984. Observations sur la nutrition d'un Mytilidae d'un site hydrothermal actif de la dorsale du Pacifique oriental. C. R. Acad. Sci. Paris, Ser. III, 298, 493-498.
  25. Paull, C.K., B. Hecker, R. Commeau, R.P. Freeman-Lynde, C. Neumann, W.P. Corso, S. Golubic, J.E. Hook, E. Sikes, and J. Curray. 1984. Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science, 226, 965-967. https://doi.org/10.1126/science.226.4677.965
  26. Rau, G.H. and J.I. Hedges. 1979. Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science, 203, 648-649. https://doi.org/10.1126/science.203.4381.648
  27. Schweimanns, M. and H. Felbeck. 1985. Significance of the occurrence of chemoautotrophic endosymbionts in lucinid clams from Bermuda. Mar. Ecol. Prog. Ser., 24, 113-120. https://doi.org/10.3354/meps024113
  28. Smith, D.C. 1979. From extracellular to intracellular: the establishment of a symbiosis. Proc. Royal Soc. London, B204, 115-130.
  29. Smith, K.L.Jr. 1985. Deep sea hydrothermal vent mussels: nutrition stage and distribution at the Galapagos Rift. Ecology, 66, 1067-1080. https://doi.org/10.2307/1940566
  30. Southward, E.C. 1986. Gill symbionts in thyasirids and other bivalve molluscs. J. Mar. Biol. Assoc., 66, 889-914. https://doi.org/10.1017/S0025315400048517
  31. Stein, J.L. 1984. Subtidal gastropods consume sulfur-oxidizing bacteria: evidence from coastal hydrothermal vents. Science, 223, 696-698. https://doi.org/10.1126/science.223.4637.696
  32. Stein, J.L., S.C. Cary, R.R. Hessler, S. Ohta, R.D. Vetter, J.J. Childress, and H. Felbeck. 1988. Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol. Bull., 174, 373-378. https://doi.org/10.2307/1541963