Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

사람 암세포와 단핵세포에서 고포도당 농도에 의한 FDG 섭취 저하의 서로 다른 기전

  • Kim, Chae-Kyun (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine) ;
  • Chung, June-Key (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine) ;
  • Lee, Yong-Jin (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine) ;
  • Hong, Mee-Kyoung (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine) ;
  • Jeong, Jae-Min (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine) ;
  • Lee, Dong-Soo (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine) ;
  • Lee, Myung-Chul (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine)
  • 김채균 (서울대학교 의과대학 핵의학교실, 암연구소) ;
  • 정준기 (서울대학교 의과대학 핵의학교실, 암연구소) ;
  • 이용진 (서울대학교 의과대학 핵의학교실, 암연구소) ;
  • 홍미경 (서울대학교 의과대학 핵의학교실, 암연구소) ;
  • 정재민 (서울대학교 의과대학 핵의학교실, 암연구소) ;
  • 이동수 (서울대학교 의과대학 핵의학교실, 암연구소) ;
  • 이명철 (서울대학교 의과대학 핵의학교실, 암연구소)
  • Published : 2002.04.30

Abstract

To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied $[^{18}F]$ fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5 - 10.8 mU/mg), while SNU-C5 and monocytes showed lower range of hexokinase activity (4.3 - 6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

목적: FDG PET은 악성종양의 진단에 유용하게 쓰이고 있으나, 염증에도 섭취되어 진단에 어려움이 있다. 염증에서 F-18-FDG 섭취는 단핵세포에서 포도당대사가 항진되어 나타난다. 이 연구에서는 사람의 암세포와 단핵세포간에 포도당대사에 차이가 있는지 알아보고자 하였다. 대상 및 방법: 사람의 대장암 세포주(SNU-C2A, SNU-C4, SNU-C5)와 폐암 세포주(NCI-H522), 단핵세포를 포도당 농도가 다른 배지에서 각각 배양시키고, FDG 섭취와 포도당운반체 1(Glut1)의 발현, hexokinase 활성도의 변화를 비교 분석하였다. 결과: 포도당이 없는 배지에서는 암세포와 단핵세포 모두에서 FDG 섭취가 증가되나 포도당 고농도(16.7 mM)에서는 섭취가 감소하였다. 이 고농도에서 Glut1 mRNA의 발현은 대장암 세포주, 폐암 세포주에서 감소하였다. 고농도의 포도당 배지에서 Glut1 단백질의 발현도 4종류의 암세포에서 모두 감소하였으나, 단핵세포에서는 변화가 없었다. SNU-C2A, SNU-C4, NCI-H522 세포에서 hexokinase의 활성도는 비슷하였고, 단핵세포와 SNU-C5에서는 약간 증가하였다. 결론: 포도당 섭취에 있어서 사람의 암 세포주와 단핵세포는 서로 다른 기전을 보이고 있다. 대장암 세포는 포도당 농도에 의한 포도당 섭취 변화가 Glut1에 의하여 조절되나, 단핵세포는 다른 기전을 가지고 있다.

Keywords

References

  1. Brodin L. H., Valind S-O., Rhodes C. G., PantinC. F., Sweatman M. and Jones T. Fluorine-ISdeoxyglucose uptake in sarcoidosis measured withpositron emission tomography. Eur J Nucl Med1994;21:297-305.
  2. Haberkorn U., Ziegler S. I., Oberdorfer F., TrojanH., Haag D., Peschke P., Berger M., Altmann A.and Kaick G. V. FDG uptake, tumor proliferationand expression of glycolysis associated genes inanimal tumor models. Nucl Med Bioi 1994;21:827-834.
  3. Reske S. N., Grillenberger K. G., Glatting G.,Port M., Hildebrandt M., Gansauge F. and BegerH-G. Over expression of glucose transporter 1and increased FDG uptake in pancreatic carcinoma.J Nucl Med 1997;38:1344-1348 .
  4. Wahl R. L., Henry C. A. and Ethier S. P. Serumglucose: Effects on tumor and normal tissueaccumulation of 2-[F-18]-fluoro-2-deoxy-D-glucosein rodents with mammary carcinoma. Radiology1992;183:643-647.
  5. Ichiya Y., Kuwabara Y., Sasaki M., Yoshida T., Omagari J., Akash Y., Kawashima A., Fukumura T. and Masuda K. FDG-PET in infectious lesions: the detection and assessment of lesion activity. Ann Nucl Med 1996;10:185-191.
  6. Fukuzumi M., Shinomiya H., Shimizu Y., OhishiK. and Utsumi S. Endotoxin-induced enhancementof glucose influx into murine peritonealmacrophages via GLUT 1. Infect Immunol1996;64:108-112.
  7. Gamelli RL., Liu H., He L.K. and HofmannC.A. Augmentation of glucose uptake andglucose transporter-I in macrophages followingthermal injury and sepsis in mice. J Leukoc Bioi1996;59:639-647.
  8. Kubota R., Yamada S., Kubota K., Ishiwata K.,Tarnahashi N. and Ido T. Intratumoral distributionof Flurine-18-fluorodeoxyglucose in vivo: highaccumulation in macrophages and granulationtissues studied by autoradiography. J Nucl Med1992;33: 1972-1980.
  9. Brown R S., Leung I. Y., Fisher S. I., Frey K.A., Ethier S. P. and Wahl R L. Intratumoraldistribution of tritiated-FDG in breast carcinoma:correlation between Glut-1 expression and FDGuptake. J Nucl Med 1996;37:1042-1047.
  10. Brown R S. and Wahl R. Overexpression ofGLUT 1 glucose transporter in human breastcancer. An immunohistochemical study. Cancer1993;72: 2979-2985.
  11. Bustamante E., Morris H. P. and Petersen P. L.Energy metabolism of tumor cells: Requirementfor a form of hexokinase with a propensity formitochondrial binding. J Bioi Chem 1981;256:8699-8704.
  12. Chung I-K., Lee Y. I., Kim c., Choi S. R, KimM., Lee K. L., Ieong J. M., Lee D. S., langI-I., and Lee M. C. Mechanisms related to[18F]fluorodeoxyglucose uptake of human coloncancers transplanted in nude mice. J Nucl Med1999;40:339-346.
  13. Monakhov N. K., Neistadt E. L. and Shavlovskii M. M. Physicochemical properties and isozyme composition of hexokinase from normal andmalignant human tissues. J Natl Cancer Inst 1978;61:27-34.
  14. Nisoka T., Oda Y., Seino Y., Yamamoto T.,Inagaki N., Yano H., Imura H., Shigemoto Rand Kikuchi H. Distribution of the glucosetransporters in human brain tumors. Cancer Res1992;52:3972-3979.
  15. Waki A., Kato H., Yano R., Sadato N.,Yokoyama A., Ishii Y., Yonekura Y. andFujibayashi A. The importance of glucosetransport activity as the rate-limiting step of2-deoxyglucose uptake in tumor cells in vivo.Nucl Med Bioi 1998;25:593-597.
  16. Mellanen P., Minn H. and Grenman RExpression of glucose transporters in head-andneck tumors. Int J Cancer 1992;56:622-629.
  17. Glick R., Unterman T. and Lacson RIdentification of insulin-like growth factor (lGF)and glucose transporter 1 and 3 mRNA in CNStumors. Regul Pept 1993;48:251-256.
  18. Grobholz R, Hacker H. and Thorens B.Reduction in the expression of glucosetransporter protein GLUT2 in preneoplastic andneoplastic lesions and reexpression of GLUTI inlate stages of hepatocarcinogenesis. Cancer Res1993;53:4204-4211.
  19. Yamamoto T., Seino Y., Fukumoto H., Koh G.,Yano H., Inagaki N., Yamada Y., Inoue K.,Manabe T. and Imura H. Over-expression offacilitative glucose transporter genes in humancancer. Biochem Biophy Res Comm 1990;170:223-230.
  20. Malide D., Davies-Hill T. M., Levine M. andSimpson 1. A. Distinct localization of GLUT-I,-3, and -5 in human monocyte-derivativemacrophages: effects of cell activation. Am JPhysiol 1998;74:E5l6-526.
  21. Flier J. S., Mueckler M., McCall A. L. and Lodish H. F. Distribution of glucose transporter messenger RNA transcripts in tissues in rat and man. J Clin Invest 1987;79:657-661.
  22. Torizuka T., Clavo A. C. and Whal R L. Invitro study of PET tumor tracers at normal andelevated media glucose levels. J Nucl MedSuppl 1996;37:64p.
  23. Parry D. M. and Pedersen P. L. Intracellularlocalization and properties of particulatehexokinase in the Novikoff ascites tumor:Evidence for an outer mitochondrial membranelocation, J Bioi Chem 1983;258:10904-10912.
  24. Gallagher B. M., Fowler J. S., Gutterson N. I.,McGregor R R, Wan C. N. and Wolf A. P.Metabolic trapping as a principle of radiopharmaceuticaldesign: Some factors responsible forthe biodistribution of [18F]2-deoxy-2-D-glucose.J NuclMed 1978;19:1154-1161.
  25. Barghouthi S., Everett K. D. E. and Speert D. P.Nonopsonic phagocytosis of Pseudomonasaeruginosa requires facilitated transport ofD-glucose by macrophages. J Immunol 1995;154:3420-3428.
  26. Asano T., Shibasaki Y., Lin J-J., Tsukuda K.,Katagiri H., Ishihara H., Yazaki Y. and Oka Y.Expression of GLUTl glucose transporterincreases thymidine uptake in Chinese hamsterovary cells at low glucose concentrations.Cancer Res 1991; 51:4450-4454.
  27. Haspel H. C., Wilk E. W., Birnbaum M. J.,Cusshman S. w., Rosen O. M Glucose deprivationand hexokinase transporter polypeptides ofmurine fibroblasts. J Biol Chem 1986;261:6778-6789.
  28. Hoh C., Schiepers C., Seltzer M. A., Gambhir S.S., Silverman D. H. S., Czemin 1., Maddahi J.and Phelps M.E. PET in oncology: will itreplace the other modalities? Semin Nucl Med1997;27:94-106.