Effect of Process Aids on Rheological and Mechanical Properties of Styrene-Butadiene Rubber Compound

가공조제가 Styrene-Butadiene Rubber 배합고무의 유변특성 및 기계적 물성에 미치는 영향

  • Kang, Yong-Gu (R&D Center of Nexen Tire Company) ;
  • Jung, Hoon (R&D Center of Nexen Tire Company) ;
  • Kim, Tae-Nyun (Department of Textile and Clothing, College of Engineering, Woosuk University) ;
  • Kim, Wan-Doo (Rubber Mechanics Lab., Korea Institute of Machinery & Materials, Daejeon) ;
  • Nah, Chang-Woon (School of Advanced Materials, College of Engineering, Chonbuk National University)
  • 강용구 (넥센타이어 기술연구소) ;
  • 정훈 (넥센타이어 기술연구소) ;
  • 김태년 (우석대학교 의상주택학부) ;
  • 김완두 (한국기계연구원 고무역학연구실) ;
  • 나창운 (전북대학교 신소재공학부)
  • Published : 2002.09.30

Abstract

Effects of type and loading level of process aids on the rheological and mechanical properties of styrene-butadiene rubber (SBR) compound were investigated. Five commercial grades of process aids composed of fatty acids and their various derivatives such as metal salts, esters, alcohols and amides were selected. The reduction in Mooney and shear viscosities was higher for metal salt-type process aids but lower for the process aids containing high molecular weight fatty acid alcohols and esters with increasing the loading of process aids. Tensile modulus generally decreased, while heat-build-up increased with increased process aids content. No considerable effect was observed for ulimate properties such as tensile strength and elongation at break.

공정조제의 성분 및 함량이 styrene-butadiene rubber (SBR) 배합고무의 유변학적 특성과 기계적 물성에 미치는 영향을 조사하였다. 공정조제로 지방산, 지방산 유도 금속염, 에스테르 알코올, 아미드 성분을 단독 혹은 혼합한 5종의 상용제품을 선택하였다. 공정조제 첨가에 따른 무니점도와 전단점도의 감소는 금속염이 주성분인 공정조제가 가장 컸고, 고분자량의 지방산 알콜이나 에스터의 함량이 높은 공정조제가 낮았다. 공정조제의 함량증가에 따라 인장 모듈러스는 감소하고, 발열은 증가하는 경향을 나타내었지만, 극한물성인 인장강도와 파단신장율에는 그다지 큰 영향을 미치지 않았다.

Keywords

References

  1. B. G. Crowther, Plastic and Rubber International, 9, 14 (1984)
  2. W. Schuette, Proceedings of Rubber Division Meeting of American Chemical Society (paper no. 56), Cleveland, USA, October, 1996
  3. F. M O'Conner and J. L. Slinger, Rubber World, Oct. 19 (1982)
  4. K. C. Beach, L. F. Comper and V. E. Lowery, Rubber Age., May 253 (1959)
  5. N. Tokia and I. Pliskin, 'The Dependence of Processability on Weight Distribution of Elastomers', Rubber Chem. Technol., 46, 1166 (1973)
  6. E. S. Dizon and L. A. Papazian, 'The Processing of Filler-reinforced Rubber', Rubber Chem. Technol., 50, 756 (1977)
  7. G. R Cotten, 'Significance of Extensional Flow in Processing of Rubbers', Rubber Chem. Technol., 54, 61 (1981)
  8. G. R Cotten, 'Mixing of Carbon Black with Rubber I. Measurement of Dispersion Rate by Changes in Mixing Torque', Rubber Chem. Technol., 57, 118 (1984)
  9. G. R Cotten, 'Mixing of Carbon Black with Rubber II. Mechanism of Carbon Black Incorporation', Rubber Chem. Technol., 58, 774 (1985)
  10. A. Y. Coran, F. Ignatz-Hoover and P. C. Smakula, 'The Disperison of Carbon Black in Rubber Part IV. The Kinetics of Carbon Black Dispersion in Various Polymers', Rubber Chem. Technol., 67, 237 (1994)
  11. Y. G. Kang, Ph.D. Dissertation, Chonnam National University, Kwangju Korea (1999)
  12. Y. G. Kang, C. Y. Park, and C. Nah, 'A Theoretical Analysis and Simulation of Power Curve During Rubber Mixing', J. Korean Ind. Eng. Chem., 12, 693 (2001)
  13. D. H. Chang, Ph.D. Dissertation, Chonnam National University, Kwangju Korea (1996)
  14. A. Y. Coran, 'Vulcanization. Part VII. Kinetics of Sulfur Vulcanization of Natural Rubber in Presence of Delayed-action Accelerators', Rubber Chem. Technol., 38, 1 (1965)
  15. P. J. Carreau, D. C. R De Kee, and R. P. Chhabra, Rheology of Polymeric Systems, Hanser, Munich (1997)