DOI QR코드

DOI QR Code

Cell Properties for SOFC Using Synthesized Powder of Electrolyte LSGM System and Cathode LSM System

LSGM 전해질과 LSM 양극의 합성분말을 이용한 SOFC 단위전지의 특성

  • Lee, Mi-Jai (Division of Advanced Functional Materials Research, Korea Institute of Ceramic Engineering and Technology) ;
  • Nam, Jeong-Hee (Division of Advanced Functional Materials Research, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Byung-Hyun (Division of Advanced Functional Materials Research, Korea Institute of Ceramic Engineering and Technology)
  • 이미재 (요업기술원 신기능재료연구부) ;
  • 남중희 (요업기술원 신기능재료연구부) ;
  • 최병현 (요업기술원 신기능재료연구부)
  • Published : 2002.01.01

Abstract

The purpose of this study is to investigate the properties of LSGM electrolyte and LSM cathode. The unit cell based on the optimum conditions and processing for high performance was fabricated and measured. The single phase of $LaGaO_3$ was obtained on sintering at $1500^{\circ}$ for 6h with composition of $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}와 (La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ and $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$. The grain size of the sintered body was about $10∼30{\mu}m$ and electrical conductivity was 0.13 S/cm measured at $800^{\circ}$. The single phase of $LaMnO_3$ structure in $(La1-xSrx)MnO_3$ system was obtained at x=0∼0.2 and the particle size of the synthesized powder was about 40 nm. The unit cell was prepared by firing at $1200^{\circ}$ for 1h with $(La_{0.9}Sr_{0.1})MnO_3$ cathode and 0.9NiO-0.1YSZ anode screen-printed on surfaces of $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ electrolyte. The grain size of the electrode was close to $1{\mu}m$ and the electrode had porous structure. The maximum power density of unit cell showed $0.3W/cm^2$ at $800^{\circ}$.

고체산화물 연료전지의 운전온도를 낮추기 위해 구성재 중 LSGM 전해질과 LSM 양극을 합성하고, 그 특성을 조사한 후 최적 조성과 공정으로 단위전지를 제작하고 출력을 측정하였다. 전해질 조성인 $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}와 (La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$$1500^{\circ}$에서 6시간 소결한 경우 두 조성 모두 $LaGaO_3$의 단일상을 형성하였고, $10∼3{\mu}m$의 결정 크기를 갖는 치밀한 미세구조를 얻었으며, 저기전도도는 $800^{\circ}$에서 0.13S/cm를 나타내었다. 양극의 경우 GNP법으로 $(La1-xSrx)MnO_3$를 합성한 경우 Sr의 양이 0.2mole일 때까지는 $LaMnO_3$ perovskite 단일상이 생성되었으며, 입자의 크기는 약 40nm였다. 단위전지는 $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ 조성으로 소결한 전해질 양면에 $(La_{0.9}Sr_{0.1})MnO_3$ 양극과 음극의 입자크기는 $1{\mu}m$ 정도였고 다공성을 나타내었다. 이때 단위전지의 출력은 $800^{\circ}$에서 약 $0.3W/cm^2$를 나타내었다

Keywords

References

  1. N. Q. Minh, 'Ceramic Fuel Cells,' J. Am. Ceram. Soc., 76 [3] 563-88 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. N. Q. Minh, 'High-temperature Fuel Cells. Part II: The Solid Oxide Cell,' Chemtech., 21 120-26 (1991)
  3. L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas and G. J. Exarhos, 'Glycine-nitrare Combustion Synthesis of Oxide Ceramic Powders,' Materials Letters, 10 [1, 2] 6-12 (1990) https://doi.org/10.1016/0167-577X(90)90003-5
  4. J. D. Kim, J. W. Moon, G. D. Kim and C. E. Kim, 'Prep-aration of (La,Sr)Mn$O_3$ Powder by Glycine-nitrate Process Using Oxide and Starting Materials(in Kor.),' J. Kor. Ceram. Soc., 34 [10] 1003-08 (1997)
  5. R. Maric, S. OharaU T. Fukyi, T. Inagaki and J-I, Fujta. 'High-performance Ni-SDC Cermet Anode for Solid Oxide Fuel Cells at Medium Operating Temperature,' Etectro-chemicaI and Solid-state Letters, 1 [5] 201-03 (1998)
  6. T. Fukui, S. Ohara and K. Mukai, 'Long-term Stability of Ni-YSZ Anode with a New Microstructure Prepared from Composite Powder,' Electrochemical and Solid-state Let-ters, 1 [3] 120-22 (1998)
  7. T. Ishihara, H. Matsuda and Y. Takita, 'Doped LaGa$O_3$ Per-ovskite Oxide as a New Oxide lonic Conductor,' J. Am. Chem. Soc., 116 [9] 3801-03 (1994) https://doi.org/10.1021/ja00088a016
  8. T. Ishihara, M. Higuchi, H. Furutani, T. Fukushima, H. Nishiguchi and Y. Takita, 'Potentiometric Oxygen Sensor Poerable in Low Temperature by Applying LaGa$O_3$-based Oxide for Electrolyte,' J. Electrochem. Soc., 444 [5] L122-L125 (1997)
  9. T. Ishihara, H. Matsuda and Y. Takita, 'Effects of Rare Earth Cations Doped for La Site on the Oxide lonic Con-ducdvity of LaGa$O_3$-based Perovskite Type Oxide,' Solid State lonics, 79 147-51 (1995) https://doi.org/10.1016/0167-2738(95)00054-A
  10. K. Nomura. Shigeo and H. Ishkawa, 'Electrical Conduction Behavior in LaMn$O_3$ Perovskite-type Oxides,' The 2nd International Fuel Cell Congerence 2nd JFCC, 489-92 (1996)
  11. J. D. Kim, G. D. Kim and K. T. Lee, 'Oxygen Reduction Mechanism and Electode Properties of (La,Sr)Mn$O_3$-YSZ Composite Cathode for Solide Oxide Fuel Cell(I, II)(inKor.),' J. Kor. Ceram. Soc., 38 [1] 84-99 (2001)
  12. B. Gharbage, M. Henault, T. Pagnier and A. Hammou, 'Preparation of $La_1-xSr_xMnO_3$ Thin Films by a Pyrosol Derived Method,' Mat. Res. Bull., 26 1001-07 (1991) https://doi.org/10.1016/0025-5408(91)90082-W
  13. M. J. Lee, S. S. Park and B. H. Choi, 'Variations in the Properties of LSGM system Electrolyte with Sr and Mg Addition and Sintering Conditions(in Kor.),' J. Kor. Ceram. Soc., 39 [4] 351-57 (2002)
  14. A. Hammouche, E. Siebert and A. Hammou, 'Crystallo-graphic, Thermal and Electrochemical Properties of the Sys-tem $La_1-xSr_xMnO_3$ for High Temperature Solid Electrolyte Fuel Cells,' Mat. Res. BuIl, 24 367-80 (1989) https://doi.org/10.1016/0025-5408(89)90223-7