DOI QR코드

DOI QR Code

Electrical Conduction in Y2O3-doped SrZrO3-metal Electrode System

Y2O3가 도핑된 SrZrO3-금속전극계의 전기전도 특성

  • Baek, Hyun-Deok (Department of Materials Science and Engineering, Hong-Ik University) ;
  • Lee, Poong-Hun (Department of Materials Science and Engineering, Hong-Ik University)
  • 백현덕 (홍익대학교 재료공학부) ;
  • 이풍헌 (홍익대학교 재료공학부)
  • Published : 2002.01.01

Abstract

Electrical conduction in $SrZr_{1-x}Y_xO_{3-\delta}$((x=0.05, 0.10)-metal electrode system was investigated by impedance spectroscopy and two-probe d.c. conductivity measurement. Electrode conductivity in anodic direction varies with $P_W^{1/2}$( and that in cathodic direction with $P_{O2}^{1/4}$ in oxidizing atmosphere. In hydrogen atmosphere, the addition of water vapor increased the electrode conductivity both in anodic and cathodic direction. Increasing dopant concentration from 5 to 10% showed a more than four times increase in anodic conduction as well as bulk conduction of the solid electrolyte. This observation implies that unfilled oxygen vacancy concentration increases rapidly as the dopant content increases in humid atmosphere. The activation energy of cathodic conduction in Pt and Ag electrode was nearly same below $800^{\circ}C$ which means the rate of cathodic reaction is determined by the reaction in the electrolyte surface rather than on the metal electrodes.

$SrZr_{1-x}Y_xO_{3-\delta}$(x=0.05, 0.10)-금속전극 계에서 임피던스법과 d.c.법으로 전기전도도를 측정함으로써 고체전해질 및 전극전도도를 고찰하였다. 고체전해질과 anode를 통한 전기전도도는 $P_W^{1/2}$(PW는 수증기분압)에 의존하여 증가함을 보였다. Cathode 전도도는 $P_{O2}^{1/4}$에 비례함을 보였으며, 수증기분압 증가와 함께 감소하여 고체전해질내의 전자 결함의 농도와 함께 증가하는 것을 알 수 있었다. 수소분위기에서는 수증기의 첨가가 anode와 cathode 두 방향의 전극반응 속도 모두를 촉진하였다. 도펀트 첨가량이 5%에서 10%로 증가될 때 anode와 고체전해질의 전기전도도가 3배 이상 크게 증가하여 유효 산소이온공공의 농도가 급격히 증가함을 알 수 있었다. Pt와 Ag전극을 통한 cathode 전도도의 활성화에너지가 거의 같은 값을 나타냈으며 이는 cathode반응의 속도가 금속전극이 아니라 고체전해질표면에서 일어나는 반응에 의하여 결정되는 것으로 해석되었다.

Keywords

References

  1. K. D. Kreuer, 'On the Development of Proton Conducting Materials for Technological Applications,' Solid State lon-ics, 97 1-15 (1997) https://doi.org/10.1016/S0167-2738(97)00082-9
  2. I. Kosaki, J. G. M. Becht, R. van Landschoot and J. Schoonman, 'EIectrical Properties of$SrCe_0.95Yb_0.05O_3$ in Hydrogen Containing Atmospheres,' Solid State lonics, 59 287-96 (1993) https://doi.org/10.1016/0167-2738(93)90063-9
  3. H-D. Baek, 'Modeling of Electrical Conductivity in High-temperature Proton-conducting Oxides,' Solid State lonics, 110 255-62 (1998) https://doi.org/10.1016/S0167-2738(98)00138-6
  4. K. D. Kreuer, 'Aspects of the Formation and Mobility of Protonic Charge Can-iers and the Stability of Perovskite-type Oxides,' Solid State lonics, 125 285-302 (1999) https://doi.org/10.1016/S0167-2738(99)00188-5
  5. R. J. Phillips, N. Bonanos, F. W. Poulsen and E. O. Ahlgren, 'Structural and Electrical Characterisation of $SrCe_1-xY_xO_xi$,' SoIid State lonics, 125 389-95 (1999) https://doi.org/10.1016/S0167-2738(99)00200-3
  6. N. Bonanos, 'Oxide-based Protonic Conductors: Point Defects and Transport Properties,' Solid State lonics, 145 265-74 (2001) https://doi.org/10.1016/S0167-2738(01)00951-1
  7. P. Fabry and M. Kleitz, 'Influence of the Metal and the Etectrolyte Composition on the Characteristics of the Oxy-gen Electrode Reaction on the Solid Oxide Electrolyte,' Electroanal. Chem. Interfacial Electrochem., 57 165-77(1974) https://doi.org/10.1016/S0022-0728(74)80020-3
  8. M. J. Verkerk, M. W. J. Hammink and A. J. Burggraaf, 'Oxygen Transfer on Substituted Zr$O_2$, $Bi_2O_2$ and CE$O_2$ Electrolytes with Platinum Electrodes,' J. Electrochem. Soc., 130 [1] 70-84 (1983) https://doi.org/10.1149/1.2119686
  9. B. C. Nguyen, T. A. Lin and D. M. Mason, 'Electrocatalytic Reactivity of Hydrocarbons on a Zirconia Electrolyte Sur-face,' J. Electrochem. Soc., 133 [9] 1807-15 (1986) https://doi.org/10.1149/1.2109027
  10. N. Bonanos and M. Mogensen, '$H_2$ Oxidation at the Inter-Face Ni/$Sr_0.995Ce_0.95Y_0.05O_2.970$,' So lid State lonics, 97 483-88 (1997) https://doi.org/10.1016/S0167-2738(97)00052-0
  11. D. Kek and N. Bonanos, 'Electrochemical H-D Isotope Effect at Metal-perovskite Proton Conductor Interfaces,' SoIid State lonics, 125 345-53 (1999) https://doi.org/10.1016/S0167-2738(99)00195-2
  12. D. Kek, N. Bonanos, M. Mogensen and S. Pejovnik, 'Effect of Electrode Material on the Oxidation of $H_2$ at the Metal-$Sr_0.995Ce_0.95Y_0.05O_2.970$ Interface,' Solid State lonics, 131 249-59 (2000) https://doi.org/10.1016/S0167-2738(00)00669-X
  13. D. Kek and N. Bonanos, 'Investigation of Hydrogen Oxi-dation Reaction on a Metal/Perovskite Proton Conductor Interface by Impedance Spectroscopy,' Vacuum, 61 453-57 (2001) https://doi.org/10.1016/S0042-207X(01)00154-3
  14. J. Mizusaki, H. Tagawa, T. Saito, K. Kamitani, T. Yama-mura, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippom-matsu, S. Nakagawa and K. Hashimoto, 'Preparation of Nickel Pattern Electrodes on YSZ and their Electrochemical Properties in $H_2$-$H_2$O Atmospheres,' pp. 553-41 in Pro-Ceedings of Third International Symposium on Solid Oxide Feul Cells. Ed. by S. C. Singhal and H. Iwahara, The Elec-trochemical. Soc., Inc., Pennington, NJ, 1993
  15. S. P. Jiang, 'The Role of Water Vapor on the Kinetics of $H_2$Oxidation on Porous Ni Electrode at $1000^oC$,' pp. 819-28 in Science and Technology of Zirconia V, Ed. by S. P. S. Bad-wal, M. J. Bannister and R. H. J. Hannink, Technomic Pub-lishing Co., Lancaster, 1993
  16. S. P. Jiang, J. G. Love and S. P. S. Badwal, 'Electrochemical Techniques in Studies of Solid lon Conductors,' pp. 81-132 in Electncal Properties of Oxide Materials, Ed. by J. Nowotny and C. C. Sorrell, Trans Tech Publications, Swit-zerland, 1997
  17. H-D. Baek and J-H. Noh, 'Electrical Conduction in $SrZr_0.95Y_0.05O_2.975$ Ceramics,' Kor. J. Ceram., 5 [3] 288-95 (1999)
  18. T. Norby and P. Kofstad, 'Proton and Native Conductivities in $Y_2O_3$ at High Temperatures,' Solid State lonics, 20 169-84 (1986) https://doi.org/10.1016/0167-2738(86)90211-0
  19. D. Y. Wang and A. S. Nowick, 'Cathodic and Anodic Polar-ization Phenomena at Platinum Electrodes with Doped Ce$O_2$ as Electrolyte,' J. Electrochem. Soc., 126 [7] 1166-72 (1979) https://doi.org/10.1149/1.2129236
  20. D. Y. Wang and A. S. Nowick, 'Cathodic and Anodic Polar-ization Phenomena at Platinum Electrodes with Doped Ce$O_2$ as Electrolyte,' J. Electrochem. Soc., 126 [7] 1166-72(1979) https://doi.org/10.1149/1.2129236
  21. R. Waser, 'Solubility of Hydrogen Defects in Doped and Undoped BaTi$O_3$,' J. Am. Ceram. Soc., 71 [1] 58-63 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05760.x
  22. R. Hempelmann, J. Eschenbaum, M. Altmayer, B. Gro$\beta$, D. Grambole, F. Herrmann, D. Nagengast, J. Krauser and Weidinger, 'Pressure/Composition Isotherms of Proton Con-ducting $Sr_Yb_0.05Zr_0.95O_2.975/H_2O$ Means of Nuclear Res-onance Reaction Analysis,' Ber. Bunsenes. Phys. Chem., 101 985-93 (1997) https://doi.org/10.1002/bbpc.19971010702
  23. J. A. Labrincha, J. R. Frade and F. M. B. Marques, 'Defect Structure of SrZr$O_3$,' SoUd State lonics, 61, 71-5 (1993) https://doi.org/10.1016/0167-2738(93)90336-2
  24. J. Muller, K. D. Kreuer, J. Maier, S. Matsuo and M. Ish-igame, 'A Conductivity and Thermal Gravimetric Analysis of a Y-doped SrZr$O_3$ Single Crystal,' Solid State lonics, 97 421-27 (1997) https://doi.org/10.1016/S0167-2738(97)00087-8
  25. J. Mizusaki and H. Tagawa, 'Kinetics of the Electrode at the $H_2-H_2O$ Porous Pt/Stabilized Zirconia Interface,' J. Elec-trochem. Soc., 141 [6] 1674-83 (1979)
  26. E. K. Shalkova, Y. M. Baikov, B. T. Melekh, T. A. Per-evalova and Y. N. Filin, 'Hydrogen in the Complex Oxides with the Perovskite Structure CaTI$O_3$, SrTi$O_3$, BaTi$O_3$ and BaCe$O_3$,' Russ. J.Inorg. Chem., 35 [1] 148-49 (1990)
  27. Yu. M. Baikov and E. K. Shalkova, 'Hydrogen in Per-ovskites,' J. Solid State Chem., 97 224-27 (1992) https://doi.org/10.1016/0022-4596(92)90027-S
  28. H. Uchida, S. Tanaka and H. Iwahara, 'Polahzation at Pt Electrodes of a Fuel Cell with a High Temperature-type Pro-tan Conducutive Solid Electrolyte,' Solid State Ionics, 15 937 (1985)

Cited by

  1. vol.39, pp.7, 2002, https://doi.org/10.4191/KCERS.2002.39.7.635