DOI QR코드

DOI QR Code

Fabrication of the Conductive Fiber Coated Sb-doped SnO2 Layer

Sb-doped SnO2를 코팅한 도전성 섬유의 제조

  • Kim, Hong-Dae (Gyeongsang National University, Division of materials Science and Engineering) ;
  • Choi, Jin-Sam (Gyeongsang National University, Division of materials Science and Engineering) ;
  • Shin, Dong-Woo (Gyeongsang National University, Division of materials Science and Engineering)
  • Published : 2002.01.01

Abstract

Fabricatio of the potassium-titanate fiber with K2O${\cdot}nTiO_2$ composition and coating of electrically conductive Sb-doped $SnO_2$ (ATO: Antimony Tin Oxide) layer on the fiber on the fiber were the fiber were the aims of this work. The fiber fabricated by slow-cooling technique showed the mean length of $15{\mu}m$ and mean diameter of $0.5{\mu}m$. Three different coating methods i.e, sol-gel, co-precipitation and urea technique, were attempted to coat the conductive ATO layer on the potassium-titanate fiber. The influences of coating method, concentrations of ATO(5∼70wt%) and Sb (0∼20wt%), temperature in the range of $450\;to\;800^{\circ}C$, number of washing (3∼4 times) on the resistivity of the ATO coated fiber were examined in details. The fiber coated ATO by coprecipitation exhibited lower resistivity of 103${\Omega}{\cdot}$cm at the 30 wt% of ATO, and showed nearly constant low value of $60{\Omega}{\cdot}cm\;to\;90{\Omega}{\cdot}$cm at the higher concentration of ATO.

본 연구는 티탄산칼륨 섬유(K2O·$nTiO_2$)를 제조한 후, 도전율이 우수한 Sb-doped $SnO_2$(ATO: Antimony Tin Oxide)를 티탄산 칼륨 섬유에 코팅하는 기술을 개발하는데 목적이 있다. 티탄산칼륨 섬유는 서냉 소성법으로 제조하였으며 섬유의 평균 길이는 $15{\mu}m$, 평균 직경은 $0.5{\mu}m$이었다. ATO를 졸-겔법, 공침법, 균일침전법등 세가지 방법으로 티탄산칼륨 섬유에 코팅 하였으며 ATO 코팅된 티탄산칼륨 섬유는 ATO 함량(5∼70 wt%), Sb 함량(0∼20 wt%), 온도($450∼800^{\circ}C$), 수세 여부 및 회수(3∼4회) 등을 변화 시키며 비저항 변화를 관찰하였다. 공침법의 경우 ATO 함량이 30wt%에서 103${\Omega}$·cm 낮은 비저항을 나타내었으며, 그 이상의 함량에서는 거의 일정한 값($60{\Omega}{\cdot}cm∼90{\Omega}{\cdot}$cm)을 보였다.

Keywords

References

  1. C. A. Vincent, 'The Nature of Semiconductivity in Poly-crystalline Tin Oxide,' J. Electrechem. Soc., 119 [4] 515-18 (1976)
  2. C. Y. Koo, K. J. Kim, K. H. Kim and H. Y. Lee, 'Room Temperature Deposition and Heat Treatment Behavior of ATO Thin Films by lon Beam Sputtering(in Kor.),' J. Kor. Ceram. Soc., 37 [11] 1025-32 (2000)
  3. C-T. Lee, U-S. Choi and Y-M. Kim, 'A Study on the Syn-thesis of Potassium Hexatitanate Whisker by the Slow Cool-ing Calcination Process,' J. Kor. Ind. & Chem., 5 [1] 160-75 (1994)
  4. H. Y. Lee, Y. J. Jeong and K. H. Lee, 'Preparation of ATO Thin Films by DC Magnetron Sputtering (II) Electrical Properties,' 33 [5] 514-18 (1996)
  5. J. P. Chatelon and C. Tenier, 'Morphology of $SnO_2$ Thin Films Obtained by the Sol-gel Technque,' Thin Solid Films, 247 162-68 (1994) https://doi.org/10.1016/0040-6090(94)90794-3
  6. H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, 'Semiconducting Transparent Thin Films,' 134-64, Institute of Physics, Publishing Bristol and Philadelpia (1995)
  7. M. Yoshizumi, 'Electrically Conductive Powder with White Color Tone,' Silicates Industriels, 7-8 151-57 (1984)
  8. S. van der Gijp and M. H. Emond, 'Preparation of Ba$TiO_3$ by Homogeneous Precipitation,' J. European Ceram. Soc., 19 1683-90 (1999) https://doi.org/10.1016/S0955-2219(98)00274-X
  9. S. W. Lee and K. H. Kim, 'Thermodynamical and Exper-imental Analyses of Chemical Vapor Deposition of ATO from $SnCl_4-SbCl_5-H_2O$ Gas Mixture,' 29 [12] 990-96 (1992)
  10. Uchida Rokakuho, X-ray Diffraction Analysis, pp 254-56, Pearson Education Korea (2000)
  11. Z. M. Jarzebski and J. P. Marton, 'Physical Properties of $SnO_2$, Materials, II. Electrical Properties,' J. Electrochem. Soc., 123 [9] 299C-310C (1976) https://doi.org/10.1149/1.2133090
  12. Z. M. Jarzebski and J. P. Marton, 'Physical Properties of $SnO_2$ Materials, III. Optical Properties,' J. Electrochem.Soc., 123 [10] 333C-46C (1976) https://doi.org/10.1149/1.2132647

Cited by

  1. Effect of RF Power on SnO Thin Films Obtained by Sputtering vol.49, pp.5, 2012, https://doi.org/10.4191/kcers.2012.49.5.399
  2. Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target vol.26, pp.4, 2016, https://doi.org/10.3740/MRSK.2016.26.4.222