DOI QR코드

DOI QR Code

Dielectric Properties and Ordering Structures of Pb(Fe1/2Ta1/2)O3-Pb(Fe1/2Nb1/2)O3 Solid Solutions

Pb(Fe1/2Ta1/2)O3-Pb(Fe1/2Nb1/2)O3 고용체의 유전특성 및 질서배열구조

  • Woo, Byong-Chul (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Kim, Byung-Kook (Division of Materials, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (Division of Materials, Korea Institute of Science and Technology) ;
  • Park, Hyun-Min (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Kim, Byong-Ho (Division of Materials Science and Engineering, Korea University)
  • 우병철 (한국표준과학연구원 물질량표준부) ;
  • 김병국 (한국과학기술연구원 재료연구부) ;
  • 이종호 (한국과학기술연구원 재료연구부) ;
  • 박현민 (한국표준과학연구원 물질량표준부) ;
  • 김병호 (고려대학교 재료공학부)
  • Published : 2002.01.01

Abstract

The Single phase $Pb(Fe_{1/2}Ta_{1/2})O_3$ (x=0.0∼1.0) solid solutions were successfully synthesized and their ordering structures as well as dielectric properties were investigated ${{r(Nb^{5+})=r(Ta^{5+})=0.78 {\AA},\;AW(Nb^{5+})=92.91,\;AW(Ta^{5+})=180.95}}$. While $Pb(Fe_{1/2}Ta_{1/2})O_3$ showed typical relaxor ferroelectric characteristics such as dielectric relaxation and diffuse phase transition, the sharpeness of the phase transition increased as $Ta^{5+}$ was replaced by $Nb^{5+}$ and finally $Pb(Fe_{1/2}Nb_{1/2})O_3$ showed normal ferroelectric characteristics with no dielectric relaxation. By using Raman spectroscopy, it was revealed that the $Fe^{3+}\;and\;Ta^{5+}\;of\;Pb(Fe_{1/2}Ta_{1/2})O_3$ were stoichiometrically 1:1 ordered within the short range which can be hardly probed even by TEM. Also, The degree of ordering in $Pb(Fe_{1/2}Ta_{1/2})O_3$ decreased as $Ta^{5+}$ was replaced by $Nb^{5+}$ and finally $Fe^{3+}\;and\;Nb^{5+}\;of\;Pb(Fe_{1/2}Nb_{1/2})O_3$ were completely disordered. The relaxor ferroelectric characteristics of $Pb(Fe_{1/2}Ta_{1/2})O_3$ could be correlated with the stoichiometric 1:1 ordering of B-site cations within the short range which can be hardly probed even by TEM. Also, the decrease of the relaxor ferroelectric characteristics with the replacement of $Ta^{5+}\;by\;Nb^{5+}$ could be correlated with the weakening of the ordering and the normal ferroelectric characteristics of $Pb(Fe_{1/2}Nb_{1/2})O_3$ could be correlated with the complete disordering of B-site cations.

$Pb(Fe_{1/2}Ta_{1/2})O_3$$Ta^{5+}$$Ta^{5+}$과 이온반경이 같고 원자량이 약 1/2배인 $Nb^{5+}$으로 치환한 $Pb{{Fe_{1/2}(Ta_(1-x)Nb_x)_{1/2}}O_3$ (x=0.0∼1.0) 고용체를 단일상으로 합성하여 그 유전특성 및 B자리 양이온 질서배열구조를 조사하였다. $Pb(Fe_{1/2}Ta_{1/2})O_3$는 유전완화현상 및 완만한 상전이가 뚜렷하게 관찰되는 전형적인 완화형 강유전특성을 보였지만, $Ta^{5+}$$Nb^{5+}$으로 치환됨에 따라 유전완화현상은 감소하고 상전이는 급격해져 결국 $Pb(Fe_{1/2}Nb_{1/2})O_3$는 유전완화현상이 전혀 관찰되지 않는 정상 강유전특성을 보였다. Raman 분광법에 의해 $Pb(Fe_{1/2}Ta_{1/2})O_3$$Fe^{3+}$$Ta^{5+}$은 XRD는 물론 TEM의 제한시야회절패턴으로도 검출하기 어려울 정도의 단거리영역에서 화학양론적으로 1:1 질서배열하고 있으며, $Ta^{5+}$$Nb^{5+}$으로 치환됨에 따라 $Fe^{3+}$과 ($Ta^{5+}-Nb^{5+}$) 간의 질서배열은 약화되어 결국 $Pb(Fe_{1/2}Nb_{1/2})O_3$$Fe^{3+}$$Nb^{5+}$은 완전 무질서배열하고 있음이 밝혀졌다. $Pb(Fe_{1/2}Ta_{1/2})O_3$의 완화형 강유전특성은 B자리 양이온들이 XRD는 물론 TEM의 제한시야회절패턴으로도 검출하기 어려울 정도의 단거리영역에서 화학양론적 1:1 질서배열을 하고 있는 것과, 또 $Pb(Fe_{1/2}Ta_{1/2})O_3$$Ta^{5+}$$Nb^{5+}$으로 치환됨에 따라 완화형 강유전특성이 감소되는 것은 이 질서배열이 약화되는 것과 그리고 $Pb(Fe_{1/2}Nb_{1/2})O_3$의 정상 강유전특성은 B자리 양이온들이 완전 무질서배열을 하고 있는 것과 연관지을 수 있었다.

Keywords

References

  1. G. A. Smolenskii, 'Physical Phenomena in Ferroelectrics with Diffused Phase Transition,' J. Phys. Soc. Jpn., 28 26-37 (1970)
  2. L. E. Cross, 'Relaxor Ferroelectrics,' Ferroelectrics, 76 241-67 (1987) https://doi.org/10.1080/00150198708016945
  3. J.-H. Park, 'Phase Transformation and Dielectric Relaxation in Pb($Mg_{1/3}Nb_{2/3}$)$O_3-PbTiO_3$ Relaxor Feirroelectrics(in Kor.),' J. Kor. Ceram. Soc., 38 [10] 953-57 (2001)
  4. C. A. Randall and A. S. Bhalla, 'Nanostructural-property Relation in Complex Lead Perovskites,' Jpn. J. Appl. Phys., 29 327-33 (1990) https://doi.org/10.1143/JJAP.29.327
  5. N. Setter and L. E. Cross, 'The Role of B-site Cation Disorder in Diffuse Phase Transition Behavior of Perovskite Ferroelectrics,' J. Appl. Phys., 51 4356-60 (1980) https://doi.org/10.1063/1.328296
  6. N. Setter and L. E. Cross, 'The Role of B-site Cation Disorder in Diffuse Phase Transition Behavior of Perovskite Ferroelectrics,' J. Appl. Phys., 51 4356-60 (1980) https://doi.org/10.1063/1.328296
  7. N. Setter and L. E. Cross, 'The Contribution of Structural Disorder to Diffuse Phase Transitions in Ferroelectrics,' J. Mater. Sci., 15 2478-82 (1960) https://doi.org/10.1007/BF00550750
  8. S. M. Skinner, 'Magnetically Ordered Ferroelectric Materials,' IEEE. Trans. Parts, Mater. Pack., 6 68-90 (1970) https://doi.org/10.1109/TPMP.1970.1136257
  9. N. Yasuda and Y. Ueda, 'The Effect of Hydrostatic Pressure on the Diffuse Phase Transition in Lead Iron Niobate,' Phys. Lett. A, 134 501-03 (1989) https://doi.org/10.1016/0375-9601(89)90694-4
  10. N. Ichinose and N. Kato, 'Dielectric Properties of Pb($Fe_{1/2}Nb_{1/2}$)$O_3$-based Ceramics,' Jpn. J. Appl. Phys., 33 5423-26 (1994) https://doi.org/10.1143/JJAP.33.5423
  11. B.-H. Lee, N.-K. Kim, J.-J. Kim and S.-H. Cho, 'Dielectric Characteristics of Pb[$Fe_{1/2}(Ta,Nb)_{1/2}$]$O_3$ Perovskite Ceramic System,' J. Kor. Phys. Soc., 32 S978-80 (1998)
  12. S. Ananta and N. W. Thomas, 'Relationships between Sintering Conditions, Microstructure and Dielectric Properties of Lead Iron Niobate,' J. Eur. Ceram. Soc., 19 1873-81 (1999) https://doi.org/10.1016/S0955-2219(98)00290-8
  13. S. Ananta and N. W. Thomas, 'Fabrication of PMN and PFN Ceramics by a Two-stage Sintering Technique,' J. Eur. Ceram. Soc., 19 2917-30 (1999) https://doi.org/10.1016/S0955-2219(99)00062-X
  14. D. Mohan, R. Prasad and S. Banerjee, 'Effect of Post Sinter Annealing of the Dielectric Constants of PMN and PFN,' Ceram. International, 27 243-46 (2001) https://doi.org/10.1016/S0272-8842(00)00066-3
  15. J.-Y. Ha, J.-W. Choi, S.-J. Yoon, H.-J. Kim and K.-H. Yoon, 'Microwave Dielectric Properties of Low Temperature Fired ($Pb_{0.45}Ca_{0.55}$)[$(Fe_{0.5}Nb_{0.5})_{0.9}Sn_{0]O_3$ ceramics with Various Additives,' J. Kor. Ceram. Soc., 38 [7] 597-601 (2001)
  16. T.-H. Kim, B.-K. Kim, K.-M. Choi, S.-H. Hong and D.-Y. Lim, 'Preparation of Pb($Fe_{1/2}Nb_{1/2})O_3$ Powders by Supercritical Fluid Method(in Kor.),' J. Kor. Ceram. Soc., 39 [6] 566-69 (2002) https://doi.org/10.4191/KCERS.2002.39.6.566
  17. P. E. Wemer, TREOR, University of Stockholm (1984)
  18. F. Galasso and W. Darby, 'Preparation of Single Crystals of Complex Perovskite Ferroelecthc and Semiconducting Compounds,' Inorg. Chem., 4 71-3 (1965) https://doi.org/10.1021/ic50023a015
  19. L. Bish and J. E. Poster, Modem Powder Diffaction, The Minerological Society of America, Washington D.C. (1989)
  20. B.-K. Kim, 'Probing of Nanoscaled Nonstoichiometric 1 : 1 ordehng in Pb($Mg_{1/3}Nb_{2/3})O_3$-based Relaxor Ferroelectrics by Raman Spectroscopy,' Mater. Sci. Eng. B, 94 102-05 (2002) https://doi.org/10.1016/S0921-5107(02)00089-2

Cited by

  1. ceramics derived from citrate polymeric precursors pp.00027820, 2019, https://doi.org/10.1111/jace.15998
  2. Dielectric properties of Zn- and/or Nb-substituted Pb[(Mg1/3Ta2/3),Ti]O3 ceramics vol.18, pp.1-2, 2007, https://doi.org/10.1007/s10832-007-9004-y