DOI QR코드

DOI QR Code

R-Curve Behavior and Mechanical Properties of Al2O3 Composites Containing SiC and TiC Particles

SiC와 TiC 입자를 함유하는 Al2O3 입자복합체의 균열저항거동과 기계적 성질

  • Na, Sang-Woong (School of Metallurgical and Materials Engineering, Yeungnam University) ;
  • Lee, Jae-Hyung (School of Metallurgical and Materials Engineering, Yeungnam University)
  • 나상웅 (영남대학교 재료금속공학부) ;
  • 이재형 (영남대학교 재료금속공학부)
  • Published : 2002.01.01

Abstract

Particulate composites of $Al_2O_3$/TiC/SiC, $Al_2O_3$/TiC and $Al_2O_3$/SiC have been fabricated by hot pressing and their R-curve behaviors and mechanical properties were investigated. $Al_2O_3$ containing 30 vol% TiC particles showed higher toughness by 8% than that for monolithic alumina and its fracture strength was increased significantly by approximately 30%. On the other hand, the addition of 30 vol% SiC of $3{\mu}m$ in $Al_2O_3$ decreased the fracture strength slightly but induced a rising R-curve behavior owing to the strong crack bridging of SiC particles. In case of $Al_2O_3$/TiC/SiC, arising R-curve behavior was also observed and the fracture toughness reached 6.6 MPa${\cdot}\sqrt{m}$ at the crack length of $1000{\mu}m$, which was lower than that of $Al_2O_3$/SiC, however, while the fracture strength was higher by about 20%. The fracture toughness seemed to be decreased as smaller TiC particles roughened the SiC interface and pullout of the SiC particles for crack bridging became less active.

$Al_2O_3$/TiC/SiC, $Al_2O_3$/SiC 및 $Al_2O_3$/TiC 복합체들을 고온가압소결로 제조하여 이들의 균열저항거동과 기계적 성질을 비교해 보았다. $Al_2O_3$$0.8{\mu}m$의 TiC가 30vol% 첨가된 $Al_2O_3$/TiC는 단일체 $Al_2O_3$와 비슷한 균열저항거동을 보이며 파괴인성은 전반적으로 10% 이내의 증가를 보이는데 그쳤지만 강도는 약 30% 증가하였다. $Al_2O_3$$3{\mu}m$ SiC가 30vol% 첨가된 $Al_2O_3$/SiC는 SiC 입자의 균열 접속으로 인해 증가하는 균열저항거동을 뚜렷이 보이면서 파괴인성이 긴 균열에서 약 75% 증가하였으나 강도는 다소 감소했다. $Al_2O_3$/TiC에 SiC 입자가 30 vol% 첨가된 $Al_2O_3$/TiC/SiC 복합체의 경우 단일체 $Al_2O_3$에 비해 긴 균열 거리에서 파괴인성이 50% 이상 증가된 6.6 MP${\cdot}\sqrt{m}$에 이르렀으며 강도 값도 약 20% 상승하였다. 그러나 큰 SiC 입자의 첨가로 인해 TiC 입자만 첨가된 $Al_2O_3$/TiC 복합체보다는 강도가 다소 낮았다. 또한 SiC 입자만 첨가된 $Al_2O_3$/SiC 복합체보다는 파괴인성이 다소 낮았는데, 이는 작은 TiC 입자들이 SiC 입계를 거칠게 만들어 균열접속을 일으키는 SiC 입자의 뽑힘 현상을 방해하였기 때문이다.

Keywords

References

  1. D. B. Marshall and M. V. Swanin, 'Crack Resistance Curves in Magnesia-partially-stabilized Zirconia,' J. Am. Ceram. Soc., 71 [6] 399-407 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05885.x
  2. T. Sornakumar, 'Advanced Ceramic-cerainic Composite Tool Materials for Metal Cutting Application,' Key Engi-neering Materials, 114 173-88 (1996) https://doi.org/10.4028/www.scientific.net/KEM.114.173
  3. R. F Krause, Jr., E. R. Fuller, Jr. and J. F. Rhodes, 'Fracture Resistance Behavior of Silicon Carbide Whisker-reinforced Alumina Composites with Different Porosities,' J. Am Ceram. Soc., 73 [3] 559-66 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06553.x
  4. J. Homeny and W. L. Vaughn, 'R-curve Behavior in a Sil-icon Carbide Whisker-alumina Matrix Composite,' J. Am. Cerm. Soc., 73 [7] 2060-62 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05267.x
  5. K. Niihara and A. Nakahira. 'Particles-strengthened Oxide Ceramics, Nanocomposites,' pp. 637-64 in Advanced Struc-tural Inorganic Composites. Ed. by p. Vincentini. Elsevier Science Publishers, Trieste, Italy (1990)
  6. K. Niihara and A. Nakahira, 'Strengthening and Tough-ening Mechanisms in nanocomposite Ceramics,' Ann. Chim. (Paris), 16 479-86 (1991)
  7. W-J. Kim, Y-G. Lee, W-S. Cho and S-W. Choi, 'Mechanical Properties and Microstructures of Self-toughened Silicon Nitride Ceramic Prepared by Microsturctural Control(in Kor.),' J. Kor. Ceram. Soc., 36 [4] 432-43 (1999)
  8. C. W. Li and J. Yamanis, 'Super-Tough Silicon Nitride with R-curve Behavior,' Ceram. Eng. Sic. Proc., 10 [7-8] 632-45 (1989) https://doi.org/10.1002/9780470310557.ch10
  9. K. S. Park, S. W. Lee and J. H. Lee, 'R-curve Behavior of Particulate Composites of $Al_2O_3$ containing SiC and $ZrO_2$: I.Experiment(in Kor.),' J. Kor. Ceram. Soc., 37 [4] 359-67 (2000)
  10. S. W. Na and J. H. Lee, 'R-curve Behavior of Pardculate Compo- sites of $Al_2O_3$ Containing SiC and $ZrO_2$: II. TheoreticalAnalysis(in Kor.),' J. Kor. Ceram. Soc., 37 [4] 368-75 (2000)
  11. H. Endo, M. Ueki and H. Kubo, 'Microstructure and Mechanical Properties of Hot-pressed SiC-TiC Compos-ites,' J. Mat. Sci., 26 3769-74 (1991) https://doi.org/10.1007/BF01184969
  12. C. H. McMurtry, W. D. G. Boecker, S. G. Seshadii, J. S. Zanghie and J. E. Garnier, 'Microstructure and Material Properties of SiC-$TiB_2$ Particulate Composites,' Am. Ceram. Soc. BuIl, 66 [2] 325-29 (1987)
  13. K. T. Faber and A. G. Evans, 'Crack Deflection Processes-I. Theory,' Acta Metall., 31 [4] 565-76 (1983) https://doi.org/10.1016/0001-6160(83)90046-9
  14. K. T. Faber and A. G. Evans, 'Crack Deflection Processes-II. Experiment,' Acta Metall., 31 [4] 577-84 (1983) https://doi.org/10.1016/0001-6160(83)90047-0
  15. S. J. Benjamin and M. P. Harmer, 'A History of the Role of MgO in the Sintering of $\alpha-Al_2O_3$,' Ceram. Transactions, 713-49 (1990)
  16. R. F. Krause, Jr., 'Rising Fracture Toughness from the Bending Strength of Indented Alumina Beams,' J. Am. Ceram. Soc., 71 [5] 338-42 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05051.x
  17. K. Yasuda, J. Tatami, Y. Matsuo and S. Kimura, 'Stochastic Analysis for Influence of Grain Size on Fraction of Trans-granualar Fracture in Poly Crystalline Ceramics(in Jpn.),' J. Ceram. Soc. Jpn., Int. Edition, 10 885-88 (1994)
  18. S. W. Na, S. W. Lee and J. H. Lee, 'Crack Bridging Phenomena in $Al_2O_3$/SiCp Composites,' Proceedings of the 17th Intema-tional Korea-Japan Seminar on Ceramics., 421-25 (2000)
  19. P. Chantikul, S. J. Bennison and B. R. Lawn, 'Role of Grain Size in the Strength and R-curve Properties of Alumina,' J. Am. Ceram. Soc., 73 [8] 2419-27 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb07607.x
  20. J. Selsing, 'Internal Stresses in Ceramics,' J. Am. Ceram. Soc., 44 [8] 419 (1961) https://doi.org/10.1111/j.1151-2916.1961.tb15475.x
  21. I. A. Chou, H. M. Chan and M. P. Harmer, 'Machining-induced Surface Residual Stress Behavior in $Al_2O_3$-SiC Nanocomposites,' J. Am. Ceram. Soc., 79 [9] 2403-09 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08989.x