DOI QR코드

DOI QR Code

Densification and Grain Growth Behavior of MgO and TiO2-doped Alumina

MgO 및 TiO2가 첨가된 알루미나의 치밀화와 입성장 거동

  • Lee, Jung-A (Department of Inorganic Materials Engineering, Kyungpook National University) ;
  • Kim, Jeong-Joo (Department of Inorganic Materials Engineering, Kyungpook National University)
  • 이정아 (경북대학교 무기재료공학과) ;
  • 김정주 (경북대학교 무기재료공학과)
  • Published : 2002.01.01

Abstract

Densification and grain growth behavior of MgO and -doped alumina ceramics were investigated. MgO was found to inhibit grain growth and to promote densification, but acted to promote grain growth more than densification. The density which showed the maximum shrinkage rate was investigated in the plot of shrinkage rate versus density. The data suggests that the maximum shrinkage rate separates the two kinetic regimes, below the density of maximum shrinkage, the regime associated with densification and above the maxima, the regime associated with the grain growth. The plot exhibits a maximum which shifts to higher temperatures with MgO doping and to lower with doping.

알루미나 세라믹스에 MgO와 $TiO_2$를 각각 단독으로 첨가했을 때의 치밀화와 소결 거동을 수축률-소결 밀도 관계를 통해 비교 조사하였다. MgO가 첨가되었을 때는 소결 전과정을 통해 입성장은 억제되고 치밀화는 촉진되었으나, $TiO_2$가 첨가되었을 때는 입성장은 촉진된 반면 치밀화는 떨어졌다. 또한 입자 크기, 밀도, 수축률등을 통해 수축률-소결 밀도 관계를 구하여 최대 수축률을 나타내는 밀도값(Density of Maximum Shrinkage Rate:${\rho}$J.S.R)을 조사해 보았다. 이때 최대 수축률을 나타내는 밀도값보다 낮은 밀도를 보이는 영역에서는 치밀화가 입성장보다 우세하게 진행되었으며 최대 수축률을 나타내는 밀도값보다 높은 밀도의 영역에서는 입성장이 보다 우세하게 진행되는 것으로 추정하였다. 이때 최대 수축률을 나타내는 밀도값은 $TiO_2$가 첨가된 알루미나 < 순수 알루미나 < MgO가 첨가된 알루미나의 순서로 높은 값을 보였다.

Keywords

References

  1. J.A. Lee and J.J. Kim, 'Sintering Behavior of Bimodal Size distributed Alumina Powder Mixtures,' J. Kor. Ceram. Soc., 36 [7] 718-24 (1999)
  2. M. P. Harmer and R. J. Brook, 'The Effect of MgO Additions on the Kinetics of Hot Pressure in $Al_2O_3$,' J. Mat. Sci., 15 3017-24 (1980) https://doi.org/10.1007/BF00550370
  3. R. L. Coble, 'Sintering Alumina: Effect of Atmosphere,' J. Am. Ceram. Soc., 45 [3] 123-27 (1962) https://doi.org/10.1111/j.1151-2916.1962.tb11099.x
  4. M. P. Harmer and R. J. Brook, 'Fast firing microstructural Benefits' J. Brit. Ceram. Soc., 80 [5] 147-48 (1981)
  5. H. Mostaghaci and R. J. Brook, 'Fast firing of Non Stoichiometric $BaTiO_3$,' J. Brit. Ceram. Soc., 80 [5] 148-49 (1981)
  6. M. Harmer, E. W. Roberts and R. J. Brook, 'Rapid Sintering of Pure and Doped $\alpha$-$Al_2O_3$,' Trans. Brit. Ceram. Soc., 78 [1] 22-5 (1979)
  7. C. A. Bateman, S. J. Bennison and M. P. Harmer, 'Mechanism for the Role of Magnesia in the Sintering of Alumina Containing Small Amount of a Liquid Phase,' J. Am. Ceram. Soc., 72 [7] 1214-44 (1989)
  8. S. K. Jung, B. C. Kim, S. H. Chang and J. J. Kim, 'Sintering Behaviors of ITO Ceramics with Additions of $TiO_2$,' J. Kor. Ceram. Soc.. 35 [4] 347-54 (1998)
  9. J. I. Jung, B. C. Kim, S. H. Chang and J. J. Kim, 'Effects of Sintering Atmosphere and Dopant Addition on the Densification of $SnO_2$ Ceramics,' J. Kor. Ceram. Soc., 34 [12] 1221-26 (1997)
  10. H. P. Cahoon and C. J. Christensen, 'Sintering and Grain Growth of Alpha alumina,' J. Am. Ceram. Soc., 39 [10] 337-44 (1956) https://doi.org/10.1111/j.1151-2916.1956.tb15599.x
  11. I. B. Cutler, C. Branshaw C. J. Christensen and E. P. Hyatt, 'Sintering of Alumina at Temperatures of $1400^\circ$C and Below,' J. Am. Ceram. Soc., 40 [4] 134-39 (1957) https://doi.org/10.1111/j.1151-2916.1957.tb12589.x
  12. J. R. Keski and I. B. Cutler, 'Initial Sintering of $Mn_xOAl_2O_3$,' J. Am. Ceram. Soc., 51 [8] 440-44 (1968) https://doi.org/10.1111/j.1151-2916.1968.tb11915.x
  13. J. Zaho and M. P. Harmer, 'Sintering of Ultra high purity Alumina Doped Simultaneously with MgO and FeO,' J. Am. Ceram. Soc., 70 [12] 860-66 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb04906.x
  14. W. R. Rao and I. B. Cutler, 'Effect of Iron Oxide on the Sintering Kinetics of $Al_2O_3$,' J. Am. Ceram. Soc., 56 [11] 588-93 (1973) https://doi.org/10.1111/j.1151-2916.1973.tb12422.x
  15. F. J. T. Lin. L. C. De Jonghe and M. N. Rahaman, 'Initial Coarsening and Microstructural Evolution of Fast-fired and Mgodoped $Al_2O_3$,' J. Am. Ceram. Soc., 80 [1] 2891-96 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb03208.x
  16. S. J. Bennison and M. P. Harmer, 'A History of the Role of MgO in the Sintering of $\alpha$-$Al_2O_3$, pp. 13-49, in Ceramic Transactions, Vol. 7, Sintering of Advanced Ceramics, Ed. by C. A. Handwerker et al., The American Ceramic Society, Inc., Westerville, Ohio, 1990
  17. S. J. Bennison and M. P. Harmer, 'Grain growth Kinetic for Alumina in the Absence of a Liquid Phase,' J. Am. Ceram. Soc., 68 [1] C-22-C4 (1985)
  18. S. J. Bennison and M. P. Harmer, 'Effect of MgO Solute on the Kinetics of Grain Growth in $Al_2O_3$,' J. Am. Ceram. Soc., 66 [5] C-90-C-2 (1983)
  19. M. P. Harmer, Use of Solid Solution Additives in Ceramic Processing, pp. 679-96 in Advances in Ceramics, Vol. 10 Structure and Properties of MgO and $Al_2O_3$ Ceramics, Edited by W. D. Kingery, American Ceramic Society, Columbus, OH. 1984
  20. K. A. Berry and M. P. Harmer, 'Effect of MgO Solute on Microstructure Development in $Al_2O_3$,' J. Am. Ceram. Soc., 69 [2] 143-49 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb04719.x
  21. M. P. Harmer and R. J. Brook, 'The Effect of MgO Additions on the Kinetics of Hot Pressing in $Al_2O_3$,' J. Mater. Sci., 15 3017-24 (1980) https://doi.org/10.1007/BF00550370
  22. J. E. Burke, K. W. Lay and S. Prochazka, The Effect of MgO on Mobilities of Grain Boundaries and Pores in Aluminum Oxide,' Mater. Sci. Res., 13 417-25 (1980)
  23. S. Sumita, 'Influence of Oxide Additives, Firing Temperature and Dispersing Media on Sintered $Al_2O_3$,' Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 99 [7] 538-44 (1991) https://doi.org/10.2109/jcersj.99.538
  24. S. K. Roy and R. L. Coble, 'Solubilities of Magnesia, Titania and Magnesium Titanate in Aluminum Oxide,' J. Am. Ceram. Soc., 51 [1] 1-6 (1968)
  25. T. Ikegami, K. Kotani and K. Eguchi, 'Some Roles of MgO and $BaTiO_2$ in DensiScation of a Sinterable Alumina,' J. Am. Ceram. Soc., 70 [12] 885-90 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb04911.x
  26. N. A. Haroun and D. W. Budworth, 'Effects of Additions of MgO and ZnO and NiO on Grain Growth in Dense Alumina,' Trans. Brit. Ceram. Soc., 69 [2] 73-9 (1970)
  27. J. E. Burke and S. Prochazka, 'The Effect of MgO on Intragranular Pore Entrappment in Sintered Aluminum Oxide,' Sintering Theory and Practice, Proceeding of the 5th International Round Table Conference on Sintering, Vol. 14, pp. 335-41, Elsevier Scientific Publishing Company, Amster dam, 1982
  28. J. G. J. Peelen, Influence of MgO on the Evolution of the Microstructure of Alumina, in Sintering and Catalysis, Edited by G. C. Kuczynski, New York and London, Plenum Press, pp. 443-53, 1975
  29. G. Rossi and J. E. Burke, 'Influence of Additives on the Microstructure of Sintered $Al_2O_3$,' J. Am. Ceram. Soc., 56 [12] 654-59 (1973) https://doi.org/10.1111/j.1151-2916.1973.tb12445.x
  30. C. A. Bruch, 'Sintering Kinetics for the High Density Alumina Process,' Am. Ceram. Soc. Bull.. 41 [12] 799-806 (1962)
  31. R. L. Coble, 'Effect of $BaTiO_2$ on Initial Sintering of $Al_2O_3$,' J. Am. Ceram. Soc., 55 [2] 114-15 (1971) https://doi.org/10.1111/j.1151-2916.1972.tb11229.x
  32. R. D. Bagley, I. B. Cutler and D. L. Johnson, 'Effect of $BaTiO_2$ on Initial Sintering of $Al_2O_3$,' J. Am. Ceram. Soc., 53 [3] 136-41 (1970) https://doi.org/10.1111/j.1151-2916.1970.tb12055.x
  33. C. A. Handwerker, J. M. Dynys, R. M. Cannon and R. L. Coble, 'Dihedral Angles in Magnesia and Alumina : Distributions from Surface Thermal Grooves,' J. Am. Ceram. Soc., 73 [5] 1371-77 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05207.x
  34. M. F. Ashby, 'A First Report on Sintering Diagram,' Acta. Met., 22 [3] 275-89 (1974) https://doi.org/10.1016/0001-6160(74)90167-9
  35. R. J. Brook, 'Poregrain Boundary Interactions and Grain Growth,' J. Am. Ceram. Soc., 52 [1] 56-7 (1969) https://doi.org/10.1111/j.1151-2916.1969.tb12664.x
  36. M. F. Yan, 'Microstructural Control in the Processing of Electronic Ceramics,' Mater. Sci. and Eng., 48 53-72 (1981) https://doi.org/10.1016/0025-5416(81)90066-5
  37. R. J. Brook, 'Fabrication Principles for the Production of Ceramics with Superior Mechanical Properties,' Proc. Br. Ceram. Soc., 32 7-24 (1982)
  38. F. M. A. Carpay, The Effect of Pore Drag on Ceramic Microstructure, in Ceramic Microstructure's 76 pp. 261-75 Ed. by R. M. Fulrath and J. A. Pask, Westview Press, Boulder, Co. (1977)
  39. E. E. Underwood, 'Quantitative Stereology,' Addison-wes-ley, Reading, MA, 1970
  40. E. R. Winkler, J. F. Sarver and I. B. Culter, 'Solid Solution of Titanium Dioxide in Aluminium Oxide,' J. Am. Ceram. Soc., 49 [12] 634-37 (1966) https://doi.org/10.1111/j.1151-2916.1966.tb13189.x
  41. C. Hwang, Z. Nakagawa and K. Hamano, 'Microstructure and Mechanical Strength of $TiO_2$-doped $Al_2O_3$ Ceramics Fired in Vacuum Atmosphere,' J. Ceram. Soc. Jpn., 101 [9] 1051-56 (1993) https://doi.org/10.2109/jcersj.101.1051
  42. T. K. Gupta, 'Possible Correlation Between Density and Grain Size During Sintering,' J. Am. Ceram. Soc., 55 [5] 276-77 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11281.x
  43. F. F. Lange, Approach to Reliable Powder Processing, pp.1069-83, in Ceramic Transactions, Vol. 1B, Sintering of Advanced Ceramics, Ed. by C. A. Handwerker et al., The American Ceramic Society, Inc., Westerville, Ohio, 1990