DOI QR코드

DOI QR Code

Circularity Measurenment of Fly Ash Using Digital Image Processing

디지털 이미지 분석을 이용한 Fly Ash의 원형지수 측정

  • Lee, Seung-Heun (Faculty of Materials and Chemical Engineering, Kunsan National University) ;
  • Kim, Hong-Joo (Basic Materials Crop., R and D Center) ;
  • Bae, Soon-Muk (Faculty of Materials and Chemical Engineering, Kunsan National University) ;
  • Lee, Won-Jun (Faculty of Materials and Chemical Engineering, Kunsan National University) ;
  • Sakai, Etsuo (Department of Metallurgy and Ceramics Science, Graduate School, Tokyo Institute of Technology) ;
  • Daimon, Masaki (Department of Metallurgy and Ceramics Science, Graduate School, Tokyo Institute of Technology)
  • 이승헌 (군산대학교 재료${\cdot}$화학공학부) ;
  • 김홍주 (기초소재(주) 기술연구소) ;
  • 배승묵 (군산대학교 재료${\cdot}$화학공학부) ;
  • 이원준 (군산대학교 재료${\cdot}$화학공학부) ;
  • ;
  • Published : 2002.01.01

Abstract

This paper investigates circularity of fly ashes using the digital image processing. Fly ashes directly collect from electrostatic precipitator when the load of conditions of boiler are changed at a coal-fired power plant. Circularity measurement can be accomplished in five steps: ① image acquisition, ② grey image processing, ③ detection the component to measure ④ binary image processing ⑤ feature measurement. The mean circularity of fly ashes is in the range of 0.78 to 0.83. fly ashes collected from the same hopper has similar circularity regardless of the load of boiler and circularity increases as going from the 1st hopper to 3rd one, namely as particle size become finer.

미분탄 화력발전소에서 보일러의 부하를 변화시켰을 때 전기집진기에서 단별 채취한 fly ash에 대해서 디지털 이미지 분석을 이용하여 원형지수를 검토하였다. 원형지수 측정은 다음과 같은 다섯 단계, 즉 ① 이미지 획득, ② 이미지 전처리, ③ 검출, ④ 이미지 후처리, ⑤ 측정의 단계를 거쳐 이루어 졌다. Fly ash의 평균 원형지수는 0.78∼0.83의 범위를 나타냈으며, 같은 위치에 있는 호파에서 채취한 fly ash는 보일러의 부하에 관계없이 유사한 원형지수 값을 나타냈다. 그리고 첫 번째 호파에서 세 번째 호파로 갈수록, 즉 fly ash의 평균 입경이 작아질수록 원형지수는 증가하는 경향을 나타냈다.

Keywords

References

  1. K. Y. Kang, J. G. Roemer and D. Ghosh, 'Microstructural Characterization of Cemented Sample by Image Analysis Techniques,' Powder Tech., 108 130-36 (2000) https://doi.org/10.1016/S0032-5910(99)00210-7
  2. C. F. Mora, A. K. H. Kwan and H. C. Chan. 'Particle Size Distribution Analysis of Coarse Aggregate Using Digital Image Processing,' Cem. Concr. Res., 28 [6] 921-32 (1998) https://doi.org/10.1016/S0008-8846(98)00043-X
  3. A. K. H. Kwan, C. F. Mora and H. C. Chan, 'Particle Shape Analysis of Corase Aggregate Using Digital Image Pro-cessing,' Cem. Concr. Res., 29 [12] 1403-10 (1999) https://doi.org/10.1016/S0008-8846(99)00105-2
  4. C. F. Mora and A. K. H. Kwan, 'Sphericity Shape Factor and Convexity Measurement of Coarse Aggregate for Con-crete Using Digital Image Processing,' Cem. Concr. Res., 30 [3] 351-58 (2000) https://doi.org/10.1016/S0008-8846(99)00259-8
  5. A-L. Persson, 'Image Analysis of Shape and Size of Fine Aggregates,' Eng. Geology, 50 177-86 (1988)
  6. F. Podczeck, S. R. Rahman and J. M. Newton, 'Evaluation of a Standardized Procedure to Assess the Shape of Pellets Using Analysis,' Int. J. of Pharm., 192 123-38 (1999) https://doi.org/10.1016/S0378-5173(99)00302-6
  7. J. M. R Fernlund, 'The Effect of Particle Form on Sieve Analysis : A Test by Image Analysis,' Eng. Geology, 50 111-24 (1998) https://doi.org/10.1016/S0013-7952(98)00004-0
  8. R. E. Ferrell and A. W. Drew, 'Quantification of Fly Ash in Concrete by Image Analysis Techniques : A Preliminary Investigation,' Mat. Res. Soc. Symp. Proc., 136 99-109 (1989)
  9. S. H. Lee, E. Sakai, M. Daimon and W. K. Bang, 'Char-acterization of Fly Ash Directly Collected from Electrostatic Precipitator,' Cem. Concr. Res., 29 [11] 1791-97 (1999) https://doi.org/10.1016/S0008-8846(99)00169-6
  10. S. H. Lee, E. Sakai, K. Watanabe, T. Yanagizawa and M. Daimon, 'Properties of Classified Fly Ashes by Using Electrostatic Precipitator and the Modification of Fly Ashes by the Removal of Carbon,' J. Soc. Mat. Sci. Jpn., 48 [8] 837-42 (1999) https://doi.org/10.2472/jsms.48.837
  11. S. Nagataki, E. Sakai and T. Takeuchi, 'The Fluidity of Fly Ash-Cement Paste with Superplasticizer,' Cem. Concr. Res., 14 [5] 631-38 (1984) https://doi.org/10.1016/0008-8846(84)90025-5
  12. S. Hosino, Y. Ohba, E. Sakai and M. Daimon, 'Relation between the Properties of Inorganic Powders and the Fluidity of Cement Pastes,' JCA Proceedines of Cement & Concrete, 50 186-91 (1996)
  13. H. Wadel, 'Volume, Shape and Roundness of Quartz Particles,' Geology, 43 250-80 (1935) https://doi.org/10.1086/624298
  14. R. D. Barksdale, M. A. Kemp, W. J. Sheffield and J. L. Hubbard, 'Measurement of Aggregate Shape, Surface Area and Roughness,' Transportation Reserch Record, 1301 107-16 (1991)
  15. W. C. Krumbein, 'Measurement of Geological Significance of Shape and Roundness of Sedimentary Particles,' Sediment Petrol, 11 64-72 (1991)
  16. D. Kumio and O. Levenspiel, Fludization Engineering, pp. 61-91, Butterworth-Heinemann, Boston, 1991