DOI QR코드

DOI QR Code

Fabrication of Cement-fly Ash Mortar by Using Mechanochemical Processing(MP)

Mechanochemical Processing(MP)에 의한 Cement-fly Ash 계 Mortar의 제조

  • Lee, Hyung-Jik (Department of Ceramic Engineering, Kangnung National University) ;
  • Koo, Ja-Hun (Department of Ceramic Engineering, Kangnung National University) ;
  • Yoo, In-Sang (Department of Ceramic Engineering, Kangnung National University) ;
  • Song, Doo-Gyoo (Department of Ceramic Engineering, Kangnung National University) ;
  • Joung, Hae-Kyoung (Department of Ceramic Engineering, Kangnung National University) ;
  • Kwon, Hyouk-Byoung (Department of Ceramic Engineering, Kangnung National University) ;
  • Yoon, Sang-Ok (Department of Ceramic Engineering, Kangnung National University) ;
  • Lee, Hyung-Bock (Department of Ceramic Engineering, Myongji University) ;
  • Lee, Hong-Lim (Department of Ceramic Engineering, Yonsei University)
  • 이형직 (강릉대학교 세라믹공학과) ;
  • 구자훈 (강릉대학교 세라믹공학과) ;
  • 유인상 (강릉대학교 세라믹공학과) ;
  • 송두규 (강릉대학교 세라믹공학과) ;
  • 정해경 (강릉대학교 세라믹공학과) ;
  • 권혁병 (강릉대학교 세라믹공학과) ;
  • 윤상옥 (강릉대학교 세라믹공학과) ;
  • 이형복 (명지대학교 세라믹공학과) ;
  • 이홍림 (연세대학교 세라믹공학과)
  • Published : 2002.01.01

Abstract

Fabrication of mortar containing fly ash for high strength structural material was investigated by using a Mechanochemically Processed Cement (MPC) and/or Fly Ash (MPFA), which was compared to the specimen (at the same fabrication condition of fly ash adding contents (10, 20 and 30 wt%) and curing time (7 and 28 days)) fabricated by using Ball-mill Processed Cement (BPC) and As Received Fly Ash (ARFA) in terms with compressive strength and microstructures. Mortar specimen fabricated by using MPC and ARFA showed 5-11% higher compressive strength than that in the case of using BPC and ARFA, and mortar specimen by using BPC and MPFA represented 10-20% higher compressive strength than that for the case of using BPC and ARFA. Furthermore, mortar specimen fabricated by simultaneously using MPC and MPFA exhibited about 24% higher value of compressive strength than that for the case of using BPC and ARFA, which was considered to be synergic efficiency in increasing compressive strength. Increased compressive strength as above mentioned is considered to be caused by mutually increased affinity between cement and fly ash induced during mechanochemical Processing(MP).

Mechanochemical Processing(MP)을 거친 Cement(MPC) 또는 Fly Ash(MPFA)를 사용하여 fly ash 다량 혼화 고강도 mortar의 제조를 위한 연구를 수행하였다. 단순 ball milling processing를 거친 cement(Ball-mill Processed Cement, BPC)와 채취 그대로의 처리하지 않은 fly ash(As Received Fly Ash, ARFA) 혼화시의 공시체와 비교하여 동일한 fly ash의 혼화량(10, 20, 30 wt%), 동일한 재령(7일 및 28일)의 압축강도 및 미세구조의 관점에서 고찰하였다. MPC와 ARFA 및 BPC와 MPFA를 사용한 mortar 공시체가 BPC와 ARFA를 사용한 것보다 각각 5-11% 및 10-20% 상승한 압축강도 값을 나타내었다. 더욱이 MPC와 MPFA의 동시 혼화 mortar 공시체의 압축강도가 fly ash 혼화량 20 wt% 공시체에서 강도 상승률 24%를 나타내었는데 이 값은 MPC 사용에 의한 강도 향상 비율(8%)과 MPFA 혼화에 의한 강도 향상 비율(12%)의 합을 상회하는 synergy 효과를 나다내는 강도 향상율을 나타냈다. 상기의 강도 증진은 MP에 있어서 fly ash와 cement 입자가 혼합되면서 기계적 에너지가 공급되므로 각 입자의 서로에 대한 친화성이 증대되며, 이로 인하여 수화물 생성시 cement와 fly ash 입자간의 결합력이 더욱 증가하게 되어 압축강도가 증가하는 것으로 고려된다.

Keywords

References

  1. Y D. Park et aI., 'Rabrication of Lowely Exothermic Remicon with High Strength and Statistical Quality Control,' Proc. of J. Kor. Cone. Soc., 8(1), 376-381 (1995)
  2. Kor. Elec. Co., 'Fly Ash' (1994)
  3. T. H. Ahn, K. B. Shim, Y. T. Kim and S. H. Choi, 'Characteristics and Hydration of The Moohified Belite Cement Blended Fly Ash,' J. Kor. Ceram. Soc., 37(10), 949-954 (2000)
  4. S-H. Lee, E. Sakai and M. Daimon, 'Hydrothermal Reactivity of Various Classified Fly Ashes by Electrostatic Precipitator,' J. Kor. Ceram. Soc., 37(8), 811-816 (2000)
  5. C. C. Chen, 'The Effects of Curing and High Volumes of Fly Ash on the Strength Development of PFA Mortars,' Dissertation K.U. Leuven, Leuren (1990)
  6. M. N. Haque, M. K. Copalan, R. C. Joshi and M. A. Ward, 'Strength Development of Inadequately Cured High Fly Ash Content and Structural Concrete,' Cement and Concrete Research, 16(3), 363-370 (1986) https://doi.org/10.1016/0008-8846(86)90112-2
  7. K. Kobayash, Y Seno, K. Kawai and Y Uno, 'Pore Solution Composition of Mortars with Reactiv Aggregate (II)-Change of Old Concentration, with Alkali Content and Trace Ion Concentration-' (In Jpn.), Seisan-Kenkyu, 40(7), 346-349 (1988)
  8. P. K. Mehta, 'Durability of Concrete in Sea Water a Review, Int. Conf. on Performance of Concrete in Marine Environment St Andrews,' Canada. ACI (1980)
  9. M. Abe, F. Tomosawa, K. Tamura and K. Mano, 'Influence of the Kind of Added Alkali on the Properties of Mortar or Concrete in the Test of Alkali Aggregate Reaction,' Proceedings of the Japan Concrete Institute, 10(2), 739-744 (1988)
  10. W. S. Langley and G. G. Carette, 'Incorporating High Volumes of ASTM Class F Fly Ash,' Report MSL 88-43 (op & J) Draqt, Mineral sciences Laboratories, Canada Center for Mining and Engineering Technology, Jan (1988)
  11. A. A. AI-Manaseer, M. D. Haug and K. W. Nasser, 'Compressive Strength of Concrete Containing Fly Ash, Brine and Admixtures,' ACI Materials Journal, 85, March-April, 109-116 (1988)
  12. W. S. Langley, G. G. Carette and V. M. Malhotra, 'Structural Concrete Incorporating High-Volume of ASTM Class F Fly Ash,' ACI Mateials Journal, 86(5), 507-514 (1989)
  13. R. O. Lane and J. F. Best, Concrete International, 14(7), 81 (1992)
  14. H. Y. Moon and C. W. Seo, 'Experimental Study on Domestic Fly Ash Quality as a Comcrete Mixture,' J. Kor. Civil. Soc., 7(3), 213-220 (1987)
  15. ASTM C 618, 'Standard Specification for Fly Ash and Raw or Calcined Nature Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete,' (1987)
  16. ns A 6201, 'Fly Ash' (1991)
  17. KS L 5405, 'Fly Ash' (1992)
  18. B. K. Chang, C. J. Chung, J. H. Lee and Y. M. Lim, 'Cement Material Chemistry,' 212-216, Chonnam National University (1998)
  19. C. E. Kim, H. L. Lee, H. J. Lee and H. B. Lee, 'Ceramic Powder Material Science,' 87-98, Bando Publication Co. (1994)