DOI QR코드

DOI QR Code

Low Temperature Synthesis of the Microwave Dielectric (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 Nano Powders by the Metal-citrate Process

Metal-citrate Process를 이용한 마이크로파 유전체용 (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 나노 분말의 저온 합성

  • Lee, Dong-Wook (Department of Ceramic Engineering, Hanyang University) ;
  • Won, Jong-Han (Department of Ceramic Engineering, Hanyang University) ;
  • Shim, Kwang-Bo (Department of Ceramic Engineering, Hanyang University) ;
  • Kang, Seung-Gu (Department of Materials Engineering, Kyunggi University) ;
  • Hyun, Boo-Sung (Nano Ceramics Center, Korea Institute of Ceramic Engineering & Technology)
  • 이동욱 (한양대학교 세라믹공학과) ;
  • 원종한 (한양대학교 세라믹공학과) ;
  • 심광보 (한양대학교 세라믹공학과) ;
  • 강승구 (경기대학교 재료공학과) ;
  • 현부성 (요업기술원 나노세라믹센터)
  • Published : 2002.01.01

Abstract

Nano sized $(Pb_{0.5}Ca_{0.5})(Fe_{0.5}Nb_{0.5})O_3$ (PCFN) powders with the stoichiometric composition and the uniform size distribution were successfully synthesized by the metal-citrate process through the calcination of the polymeric precursor which consisted of the metal ions and the organic network. The crystallization of the initial amorphous powders began at $400{\circ}$ and completed at $700{\circ}$. The pyrochlore phase was detected caused by the dissociation of PbO above $900{\circ}$. Single phase perovskite PCFN powders with 40 nm size and uniform shape were obtained through the calcination at $700{\circ}$.

마이크로파 유전체용 $(Pb_{0.5}Ca_{0.5})(Fe_{0.5}Nb_{0.5})O_3$ (PCFN) 나노 분말을 metal-citrate 공정을 이용하여 합성하였다. 금속 이온들과 유기 조직의 결합으로 이루어진 고분자 전구체를 형성시키고 이를 열처리하여 화학양론적 조성과 균일한 크기 분포를 갖는 PCFN 분말을 성공적으로 합성하였다. 초기 비정질상 PCFN 분말은 약 $400{\circ}$에서부터 결정화가 시작되어 $700{\circ}$에서 완전한 결정화를 이루었고, $900{\circ}$ 이상에서는 PbO의 해리로 인한 pyrochlore상이 생성되었다. $700{\circ}$에서 열처리된 단일상의 perovskite PCFN 분말은 약 40 nm의 평균 크기와 균일한 형상으로 분포되어 있었다.

Keywords

References

  1. E. S. Kim, H. S. Park and K. H. Yoon, 'Porosity Dependence of Microwave Dielectric Properties of Complex Perovskite ($Pb_{0.5}Ca_{0.5}$)($Fe_{0.5}Ta_{0.5}$)$O_3$ Ceramics,' Mater. Sci. Eng., B00 1-4 (2002)
  2. W. Wersing, 'Microwave Ceramics for Resonators and Filters,' Current Opinion in Solid State & Materiats Science, 1 715-31 (1996) https://doi.org/10.1016/S1359-0286(96)80056-8
  3. J. Kato, H. Kagata and K. Nishimoto, 'Dielectric Properties of (PbCa)(MeNb)$O_3$ at Microwave Frequencies,' Jpn. J. Appl. Phys., 31 3144-47 (1992) https://doi.org/10.1143/JJAP.31.3144
  4. P. P. Phule and S. H. Risbud, 'Low temperature Synthesis and Processing of Electronic Materials in the BaO $BaTiO_2$ System,' J. Mater. Sci., 25 1169-83 (1990) https://doi.org/10.1007/BF00585422
  5. M. Arina, M. Kakihana, Y. Nakamura, M. Yashima and M. Yoshimura, 'Polymerized Complex Route to Barium Titanate Powders Using Barium titanium Mixed metal Citric Acid Complex,' J. Am. Ceram. Soc., 79 [ll] 2847-56 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08718.x
  6. Y. S. Cho, S. M. Pilgrim and H. Giesche, 'Dielectric and Electrochemical Properties of Chemically Modified PMN PT BT Ceramics,' J. Am. Ceram. Soc., 83 [10] 2473-80 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01578.x
  7. B. Jianjiang, W. Xiaowu, Z. Yonggui and W. Hong, 'Preparation and Microwave Dielectric Properties of ($Pb_{0.45}Ca_{0.55}$) ($Fe_{1/2}Nb_{1/2}$)$O_3$ Ceramics by Citrate-gel Processing Route,' J. Mater. Sci.: Materials in electronics 13 125-29 (2002) https://doi.org/10.1023/A:1014325115394
  8. M. P. Pechini, United States Patent, 3,330,676, July (1967)
  9. C. P. Udawatte, M. Kakihana and M. Yoshimura, 'Low Temperature Synthesis of Pure SrSn$O_3$ and the ($Ba_xSr_{1-x}$) Sn$O_3$ Solid Solution by the Polymerized Complex Method,' Solid State Ionics, 128 217-26 (2000) https://doi.org/10.1016/S0167-2738(99)00306-9
  10. B. D. Cullity, Element of X-ray Diffraction $2^{nd}$ ed., Addison-Wesley, Ch.3 (1978)
  11. Y. Arai, Chemistry of Powder Production, Chapman & Hall, Ch.5 (1996)
  12. H. C. Kao and W. C. Wei, 'Kinetics and Microstructural Evolution of Heterogeneous Transformation of $\theta$alumina to $\alpha$alumina,' J. Am. Ceram. Soc., 83 [2] 362-68 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01198.x
  13. J. D. Tsay and T. T. Fang, 'Effects of Molar Ratio of Citric Acid to Cations and of pH Value on the Formation and Tharmal depcomposition Behavior of Barium Titanium Citrate,' J. Am. Ceram. Soc., 82 [6] 1409-15 (1999)
  14. J. D. Tsay and T. T. Fang, 'Evolution of the Formation of Barium Titanate in the Citrate Process: The Effect of the pH and the Molar Ratio of Barium Ion and Citric Acid,' J. Mater. Sci., 33 3721-27 (1998) https://doi.org/10.1023/A:1004636219542
  15. P. Duran, C. Moure, M. Villegas, J. Tartaj, A. C. Caballero and J. F. Ferandez, 'Low temperature Synthesis of Bismuth Titanate Niobate ($Bi_7Ti_4NbO_{21}$) Nanopardcles from a Metal organic Polymeric Precursor,' J. Am. Ceram. Soc., 83 [5] 1029-32 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01325.x
  16. M. T. Hernandez and M. Gonzalez, 'Synthesis of Resins as Alpha alumina Precursors by the Pechini Method Using Microwave and Infrared Heating,' J. Eur. Ceram. Soc., (in press)