DOI QR코드

DOI QR Code

Growth of YIG Thick Films by the Change of Supercooling and Substrate Rotation Speed

과냉도 및 기판회전조건 변화에 따른 YIG 단결정 후막의 성장

  • Kim, Yong-Tak (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Yoon, Seok-Gyu (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Geun-Young (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Im, Young-Min (Optical Telecommunication Research Center, Korea Electronics Technology Institute) ;
  • Jang, Hyun-Duck (Reliability and Failure Analysis Center, Korea Electronics Technology Institute) ;
  • Yoon, Dae-Ho (Department of Advanced Materials Engineering, Sungkyunkwan University)
  • 김용탁 (성균관대학교 신소재공학과) ;
  • 윤석규 (성균관대학교 신소재공학과) ;
  • 김근영 (성균관대학교 신소재공학과) ;
  • 임영민 (전자부품연구원 광부품연구센터) ;
  • 장현덕 (전자부품연구원 신뢰성평가센터) ;
  • 윤대호 (성균관대학교 신소재공학과)
  • Published : 2002.01.01

Abstract

Pure-yttrium iron garnet($Y_3Fe_5O_{12}$2, YIG) thick films were grown from a $PbO/B_2O_3$ flux onto (111) SGGG substrate using liquid phase epitaxy. The effect of substrate rotation speed and supercooling on crystallinity, chemical composition and growth rate of the thick films was investigated. The FWHM of films decreased with increasing of growth temperature from 860 to 910${\circ}C$. A substrate rotation speed of 120 rpm at 910${\circ}C$ lead to growth rates up to $60{\mu}m/h$.

Liquid Phase Epitaxy(LPE)법을 사용하여 SGGG(111) 기판 위에 $PbO/B_2O_3$를 융제로 Yttrium Iron Garnet($Y_3Fe_5O_{12}$, YIG) 후막을 성장하였다. 기판 회전속도와 과냉도 등의 성장변수가 YIG 후막의 결정성, 화학조성 그리고 성장속도에 미치는 영향에 대하여 고찰하였다. 성장온도가 860~910${\circ}C$까지 증가함에 따라 막의 FWHM 값은 감소하였고, 성장오도 910${\circ}C$, 120rpm의 시편회전속도에서 $60{\mu}m/h$ 이상의 높은 성장률을 나타내었다.

Keywords

References

  1. R. F. Soohoo, 'Microwave Magnetics,' Harper & Row Pub-lishers, ch. 9 (1985)
  2. F. Bertant and F. Forrat, 'Structure des Ferrimagnetiques des Terres Rares,' Compt. Rend., 242 382-84 (1956)
  3. A. Paoletti, 'Physics of Garnet,' North-Holland Publishing Co., Amsterdam, 521-39 (1978)
  4. C. L. Hogan, 'Preparation of Polycrystalline Ytthum IronGarnet Ceramics,' J. Bell. Syst. Tech., 31 281-84 (1952)
  5. M. Pardari-Horvath, A. Thavendrarajah and P. E. Wigen, 'Ferrimagnetism of Diamagnetically Substituted and Chaarge Uncompensated Yttrium Iron Garnet,' J. Magn. Magn. Mater., 119 193-204 (1993) https://doi.org/10.1016/0304-8853(93)90521-3
  6. M. B. Park, B. J. Kim and N. H. Cho, 'Microstructure and Magnetic Characteristic of Yttrium Iron Garnet Thin films Prepared by RF Magnetron Sputter(in Kor.),' J. Kor. Ceram. Soc., 36 [3] 293-300 (1999)
  7. S. Okuji, et al., 'Effect of Microwave Ferrite on the Density Distribution of Microwave-superposed Inductively Coupled Plasma,' Vacuum, 59 686-92 (2000) https://doi.org/10.1016/S0042-207X(00)00334-1
  8. T. Aoyama, T. Hibiya and Y. Ohta, 'A New Faraday Rotator Using a Thick Gd:YIG Film Grown by Liquid Phase Epi-taxy and its Applications to an Optical Isolator and Optical Switch,' J. Light. Tech., LT-1 [1] 280-85 (1983) https://doi.org/10.1109/JLT.1983.1072085
  9. K. Machida, et al., 'Magneto-optical Properties of Bi-sub-stituted Epitaxial Rare-earth Iron Garnet Thick Films,' J. AppI Phys., 61 [8] 3256-58 (1987) https://doi.org/10.1063/1.338873
  10. D. Y. Choi and S. T. Chung, 'Annealing Behaviors of Lat-tice Misfit in YIG and La-doped YIG Films Grown on GGG Substrates by LPE Method,' J. Cryst. Grow., 191 754-59 (1998) https://doi.org/10.1016/S0022-0248(98)00369-8