DOI QR코드

DOI QR Code

The Simulation of Si quantum Dot Formation in PVD Process

PVD 공정을 이용한 Si 양자점 형성 전산모사

  • 김윤성 (한양대학교 세라믹공학과) ;
  • 정용재 (한양대학교 세라믹공학과)
  • Published : 2002.01.01

Abstract

In this study, the effect of the processing parameters in PVD process on the size and the distribution of deposited Si quantum dots was quantitatively investigated by computational simulation utilizing Monte Carlo method. The processing parameters, substrate temperature, deposition time, gas pressure and target-substrate distance were selected as variables since those parameters are often selected as variables in PVD experiments. It is predicted that the density of $1{\times}10^{12}cm^{-2}$ Si quantum dots can be deposited on the substrate when the deposition rate is 0.05 nm/sec at the substrate temperature of 490${\circ}$, deposition time of 7 sec, gas pressure of 3 mTorr and target-substrate distance of 8 cm.

본 연구에서는 PVD 공정으로 Si 양자점 형성시 증착조건의 변화가 증착된 양자점 크기와 분포에 미치는 영향을 Monte Carlo법을 응용한 전산모사를 통하여 정량적으로 분석하였다. 전산모사시 PVD 공정에서 일반적으로 제어가 가능한 기판온도, 증착시간, 가스압력과 타겟-기판거리를 공정변수로 선택하였다. 계산 겨로가 증착속도가 0.05 nm/sec이고 기판온도 490${\circ}$, 증착시간 7 sec, 가스압력 3 mTorr, 타겟-기판거리가 8 cm일때 증착 밀도가 $1{\times}10^{12}cm^{-2}$인 Si 양자점 형성이 가능할 것으로 예측되었다.

Keywords

References

  1. L. Guo, E. Leobandung and S. Y. Chou, 'A Single-electron Transistor Memory Operating at Room Temperature,' Science, 275 649-51 (1997) https://doi.org/10.1126/science.275.5300.649
  2. B-H. Choi, S. W. Hwang, I. G. Kim, H. C. Shin, Y. Kim and E. K. Kim, 'Fabrication and Room-temperature Charac-terization of a Silicon Self-assembled Quantum-dot Tran-sistor,' AppI. Phys. Lett., 73 [21] 3129-31 (1998) https://doi.org/10.1063/1.122695
  3. H. Ishikuro and T. Hiramoto, 'Quantum Mechanical Effects in the Silicon Quantum Dot in a Single-electron Transistor,' Appl. Phys. Lett., 71 [25] 3691-93 (1997) https://doi.org/10.1063/1.120483
  4. T-S. Yoon, J-Y. Kwon, D-H. Lee, K-B. Kim, S-H. Min, D-H. Chae, D. H. Kim, J. D. Lee, B-G. Park and H. J. Lee, 'High Spatial Density Nanocrystal Formation Using Thin Layer of Amorphous $Si_{0.7}Ge_{0.3}$ Deposited on $SiO_2$,' J. Appl. Phys., 87 [5] 2449-53 (2000) https://doi.org/10.1063/1.372200
  5. B. Lewis and J. C. Anderson, Nucleation and Growth of Thin Films, pp.1-15, Academic press, New York, 1978
  6. M. J. Brett, S. K. Dew and T. J. Smy, 'Thin Film Micro-structure and Process Simulation Using SIMBAD,' pp. 1-79 in Thin Films-modeling of Film Deposition for Micro-electronic Applications, Edited by S. Rossangel, Academic press, San Diego, 1995
  7. S. K. Dew, T. Smy and M. J. Brett, 'Simulation of Elevated Temperature Aluminum Metallization Using SIMBAD,' IEEE Trans. Electron Dev., 39 [7] 1599-606 (1992) https://doi.org/10.1109/16.141224
  8. A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri and V. Avan zini, 'InAs/GaAs Self-assembled Quantum Dots Grown by ALMBE and MBE,' J. Cryst. Growth, 175/176 771-76 (1997) https://doi.org/10.1016/S0022-0248(96)01031-7
  9. A. T. Voutsas and M. K. Hatalis, 'Structure of As-deposited LPCVD Silicon Films at Low Deposition Temperatures and Pressures,' J. EIectrochem. Soc., 139 [9] 2659-65 (1992) https://doi.org/10.1149/1.2221280
  10. T. Smy, L. Tan, K. Chan, R. N. Tait, J. N. Broughton, S. K. Dew and M. J. Brett, 'A Simulation Study of Long Throw Sputtering for Diffusion Barrier Deposition into High Aspect Vias and Contacts,' IEEE Trans. Electron Dev. 45 [7] 1414-25 (1998) https://doi.org/10.1109/16.701470