DOI QR코드

DOI QR Code

Preparation of PMN-PT-BT Powder by Modified Mixed Oxide Method and Effect of Ag on Dielectric Properties

Modified Mixed Oxide 방법에 의한 PMN-PT-BT 분말 합성 및 그의 물성에 미치는 Ag의 영향

  • 임경란 (한국과학기술연구원 재료연구부) ;
  • 정순용 (한국과학기술연구원 재료연구부) ;
  • 김창삼 (한국과학기술연구원 재료연구부)
  • Published : 2002.01.01

Abstract

A single phase perovskite relaxor ferroelectric PMN-PT-BT was prepared by a single calcination and the modified mixed oxide process. It was accomplished by ball-milling PbO, $Nb_2O_5,\;Ti(OC_3H_7)_4,\;BaCO_3,\;and\;Mg(NO_3)_2$ instead of MgO, removing the solvent, and then followed by calcination at 900$^{\circ}C$ for 2h. The specimen sintered at 1100$^{\circ}C$/2h showed the sintered density of 7.83 g/$cm^3$, room temperature dielectric constant of 22000, and dielectric loss of 2.5%. Addition of 1.0 mole% (0.3 wt%) of Ag as $AgNO_3$ and followed by calcination at 550$^{\circ}C$/2h lowered the sintering temperature to 900$^{\circ}C$. It still showed the sintered density of 7.88 g/$cm^3$, room temperature dielectric constant of 20000 and dielectric loss of 2.4%.

Relaxor 유전체 물질인 PMN-PT-BT를 modified mixed oxide 공정과 단일 하소로 페로브스카이트 단일상으로 제조할 수 있는 공정을 시도하였다. PbO, Nb2O5, BaCO3 와 $TiO_2$ 대신 $Ti(OC_3H_7)_4$를, MgO 대신 $Mg(NO_3)_2$을 사용하여 볼밀로 혼합한 후 건조된 분말을 900$^{\circ}C$/2시간 하소하고, 이어서 1100$^{\circ}C$/2시간 열처리하여 얻은 소결체는 소결 밀도 7.83 g/$cm^3$, 실온 유전율 22000, 유전손실 2.5%의 우수한 유전 특성을 나타내었다. 소결조제로 Ag을 $AgNO_3$로 1.0 몰%(0.3wt%) 첨가한 경우 550$^{\circ}C$/2시간 하소한 분말은 900$^{\circ}C$/2시간 열처리로 소결밀도 7.88 g/$cm^3$, 실온 유전율 20000, 유전손실 2.4%을 나타내었다.

Keywords

References

  1. L. E. Cross, 'Relaxor Ferroelectrics,' Ferroelectrics, 76, 241-267 (1987) https://doi.org/10.1080/00150198708016945
  2. S. Nomura and K. Uchino, 'Electrostrictive Effect in Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-type Materials,' Ferroelectrics, 41, 117-132 (1982) https://doi.org/10.1080/00150198208210614
  3. K. Uchino, 'Electrostrictive Actuators: Materials and Applications,' Am. Ceram. Soc. Bull., 65(4), 647-656 (1986)
  4. K. M. Rittenmyer, 'Electrostrictive Ceramics for Underwater Transducer Applications,' J. Acoust. Soc. Am., 95(2), 849-856 (1994) https://doi.org/10.1121/1.408395
  5. S. L. Swartz and T. R. Shrout, 'Fabrication of Perovskite Lead Magnesium Niobate,' Mater. Res. Bull., 17, 1245-1250 (1982) https://doi.org/10.1016/0025-5408(82)90159-3
  6. Q. Zhang, W. Pan, A. Bhalla and L. E. Cross, 'Electrostrictive and Dielectric Response in Lead Magnesium Niobate-lead Titanate (0.9PMN0.1PT) and Lead Lanthanum Zirconate Titanate (PLZT 9.5/65/35) under Variation of Temperature and Electric Field,' J. Am. Ceram. Soc., 72(4), 599-604 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06181.x
  7. V. A. Isupov and E. P. Smimova, 'Electrostriction in Various Ferroelectric Ceramics with Diffuse Phase Transition,' Ferroelectrics, 90, 141-145 (1989) https://doi.org/10.1080/00150198908211282
  8. J. P. Lee, J. K. Lee, S. G. Kang and H. Kim, 'Synthesis of Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ Powder by Solvent Evaporation and its Dielectric Property' J. Kor. Ceram. Soc., 33(1), 17-24 (1996)
  9. G. H. Yoon and D. H. Kang, 'Influence of BaTiO$_{3}$ Content and Firing Temperature on the Dielectric Properties of Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ Ceramics,' J. Kor. Ceram. Soc., 26(2), 249-257 (1989)
  10. H. Park and E. S. Lee, 'Reaction Mechanism in the Formation of PMN-PT-BT Solid Solution,' J. Kor. Ceram. Soc., 31(12), 249-257 (1994)
  11. S. Chen, S. Cheng and C. Wang, 'Effect of Barium Titanate on Microstructural Evolution and Properties of Lead Zinc Magnesium Niobate Ceramics,' J. Am. Ceram. Soc., 74(2), 400-405 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb06894.x
  12. M. F. Yan, H. C. Ling and W. W. Rhodes, 'Preparation and Properties of PbO-MgO-Nb$_{2}$O$_{5}$ Ceramics Near the Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ Composition,' J. Mater. Res., 4, 930-944 (1989) https://doi.org/10.1557/JMR.1989.0930
  13. M. F. Yan, H. C. Ling and W. W. Rhodes, 'Effects of Dopants on PbO-MgO-Nb$_{2}$O$_{5}$ Ceramics Near the Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$ Composition,' J. Mater. Res., 4, 945-966 (1989) https://doi.org/10.1557/JMR.1989.0945
  14. H. Wang and W. A. Schulze, 'The Role of Excess Magnesium Oxide or Lead Oxide in Determining the Microstructure and Properties of Lead Magnesium Niobate,' J. Am. Ceram. Soc., 73(4), 825-832 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05121.x
  15. Y. S. Cho, S. M. Pilgrim and H. Giesche, 'Dielectric and Electromechanical Properties of Chemically modified PMNPT-BT Ceramics,' J. Am. Ceram. Soc., 83(10), 2473-2480 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01578.x
  16. U. Syamaprasad, A. R. S. Nair, M. S. Sarma, P. Guruswamy, P. S. Mukherjee, L. Krishnamurthy, M. Achuthan and A. D. Damodaran, 'Multilayer Capacitor Ceramics in the PMN-PT-BT System: Effect of MgO and 4PbOB$_{2}$O$_{3}$ Addition,' J. Mater. Sci.:Materials in Electronics, 8, 199-205 (1997) https://doi.org/10.1023/A:1018554431950
  17. Y. Sato, H. Kanai and Y. Yamashita, 'Effects of Silver and Palladium Doping on the Dielectric Properties of 0.9Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-0.1PbTiO$_{3}$ Ceramic,' J. Am. Ceram. Soc., 79(1), 261-265 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb07907.x
  18. Y. Chen, D. Viehland and K. Uchino, 'Substituent Effects in 0.65Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-0.35PbTiO$_{3}$ Piezoelectric Ceramics,' J. Electroceramics, 6(1), 13-19 (2001) https://doi.org/10.1023/A:1011413518237
  19. K. R. Han, S. Kim and H. J. Koo, 'New Preparation Method of Low-temperature-sinterable Perovskite 0.9Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-0.1 PbTiO$_{3}$ Powder and its Dielectric Properties," J. Am. Ceram. Soc.. 81(11), 2998-3000 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02725.x
  20. K. R. Han, Y. S. Jeong and S. Kim 'Preparation Method of 0.9PMN-0.1PT Powder with Single Perovskite Phase by Single Calcination,' J. Kor. Ceram. Soc., Submitted for Publication
  21. K. R. Han, Y. S. Jeong and D. S. Cheong, 'Preparation of Direct-Sinterable-PZT Powder and their Dielectric Properties,' J. Kor. Ceram. Soc., Submitted for Publication
  22. G. H. Maher, 'Effect of Silver Doping on the Physical and Electrical Properties of PLZT Ceramics,' J. Am. Ceram. Soc., 66(6), 408-413 (1983) https://doi.org/10.1111/j.1151-2916.1983.tb10071.x
  23. K. Niihara, H. J. Hwang, M. Yasuoka, M. Sando and M. Toriyama, 'Fabrication, Sinterability and Mechanical Properties of Lead Zirconate Titanate/Silver Composites,' J. Am. Ceram. Soc., 82(9), 2417-2422 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02099.x
  24. K. Niihara, H. J. Hwang, K. Tajima, M. Sando and M. Toriyama, 'Fatigue Behavior of PZT-based Nanocomposites with Fine Platium Particles,' J. Am. Ceram. Soc., 81(12), 3325-3328 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02776.x
  25. K. Niihara, H. J. Hwang, K. Watari, M. Sando and M. Toriyama, 'Low-temperature Sintering and High-strength Pb(Zr,Ti)OrMatrix Composites Incorporating Silver Particle,' J. Am. Ceram. Soc., 80(3), 791-793 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02901.x

Cited by

  1. Preparation Method of Spherical 0.9PMN-0.1PT Powder vol.39, pp.7, 2002, https://doi.org/10.4191/KCERS.2002.39.7.687
  2. Synthesis of nanocomposites of PMN-PT-BT with metal oxides via surface modification vol.17, pp.2-4, 2006, https://doi.org/10.1007/s10832-006-9387-1