DOI QR코드

DOI QR Code

Fabrication and CO2-sensing Characteristics of Optical Band-Pass Filter for 4.3 CO2 Wavelength

4.3 μm 파장 Optical Band-Pass Filter의 제작과 CO2 감도 특성

  • Lee, Sang-Hoon (Department of Inorganic Materials Engineering, Pusan National University) ;
  • Kim, Soo-Hyun (Department of Inorganic Materials Engineering, Pusan National University) ;
  • Kim, Kwang-Ho (Department of Inorganic Materials Engineering, Pusan National University)
  • 이상훈 (부산대학교 무기재료공학과) ;
  • 김수현 (부산대학교 무기재료공학과) ;
  • 김광호 (부산대학교 무기재료공학과)
  • Published : 2002.01.01

Abstract

Optical Band-pass Filter(BPF) for the selected wavelength of 4300 nm was designed and fabricated on Si wager by alternately depositing Ge and $SiO_2$ thin layers by an electron beam evaporation technique. The fabricated BPF showed the optical transmittance characteristics of 58.2% with FWHM(Full Width at Half Maximum) of 204 nm at 4300 nm, but showed the transmittance less than 5% due to the reflectance over all the wavelength ranges except 4300 nm band. The $CO_2$ sensitivity of BPF was investigated with the transmittance as a function of $CO_2$ gas concentration using a sensing cell attached to FT-IR instrument. The transmittance of BPF was almost linearly decreased with increasing of $CO_2$ concentration in the range of from 500 to 5000 ppm. The sensing structure using double BPFs showed higher slop of transmittance vs $CO_2$ concentration, and thus higher gas sensitivity than that using a single BPF, even though the former had relatively lower transmittance.

본 연구에서는 $CO_2$ 흡수단이 있는 4.3${\mu}m$ 파장대역의 광학 필터를 전자빔 증발 장치를 이용하여 Ge와 $SiO_2$ 박막을 다층으로 설계, 제작하였다. 제작된 Ge/$SiO_2$ 다층박막 필터는 기준파장에 대하여 반가폭(FWHM) 204nm, 투과율 58.2%, 금지대역에 대하여 5% 이하의 차단특성을 나타내는 협대역 투과필터 (narrow band-pass filter: BPF)특성을 나타내었다. 광학적 대역투과필터를 사용하여, FT-IR내에 감지실을 설치하여 단식 필터(KBr+BPF)와 복식필터(BPF+BPF)의 $CO_2$ 농도별 감도특성을 비교측정 하였다. 측정시 $CO_2$의 농도는 500ppm을 단위로 500∼5000ppm의 범위까지 관찰하였는데, 복식 필터는 단식 필터에 비해 투과율이 낮았지만, 우수한 감도 특성을 보였다.

Keywords

References

  1. D. H. Kim, J. Y. Yoon, H. C. Park and K. H. Kim, 'Sensing Characteristics of La$_{2}$O$_{3}$-coated SnO$_{2}$ Thick Film to CO$_{2}$ Gas,' l. Kor: Ceram. Soc., 36(5), 564-569 (1999)
  2. D. H. Kim, S. H. Lee and K. H. Kim, 'Sensing Characteristics of Thin Pt/SnO$_{2}$ Composite Film to CO Gas," J. KOT. Ceram. Soc., 37(12), 1135-1139 (2000)
  3. D. H. Kim, J. Y. Yoon, H. C. Park and K. H. Kim, 'Gas Sensing Characteristics of La$_{2}$O$_{3}$-SnO$_{2}$ Thick Film to CO$_{2}$ Gas,' J. Kor. Ceram. Soc., 36(3), 301-306 (1999)
  4. D. H. Kim, J. Y. Yoon, H. C. Park and K. H. Kim, 'Fabrication and Characteristics of CO$_{2}$-gas Sensor using $Li_2CO_3-Li_3PO_4-Al_2O_3$ Electrolyte and $LiMn_2O_4$ Reference Electrode,' Sensors and Actuators B, 76, 594-599 (2001) https://doi.org/10.1016/S0925-4005(01)00642-6
  5. A. Dubbe, M. Wake and Y. Sadaoka, 'Yttria/Carbonate Composite Solid Electrolytes for Potentiometric CO$_{2}$ Sensors,' Solid State Ionics, 96, 201-208 (1997) https://doi.org/10.1016/S0167-2738(97)00010-6
  6. H. Narita, Z. Y Can, J. Mizusaki and H. Tagawa, 'Solid State CO$_{2}$ Sensor using an Electrolyte in the System $Li_2CO_3-Li_3PO_4-Al_2O_3$,' Solid State Ionics, 79, 349-353 (1995) https://doi.org/10.1016/0167-2738(95)00086-L
  7. N. E. Agbor, M. C. Petty and A. P. Monkman, 'Polyaniline Thin Films for Gas Sensing,' Sensors and Actuators B, 28, 173-179 (1995) https://doi.org/10.1016/0925-4005(95)01725-9
  8. N. E. Agbor, J. P. Cresswell, M. C. Petty and A. P. Monkman, 'An Optical Gas Sensor Based on Polyaniline Langmuir-Blodgett Films,' Sensors and Actuators B, 41, 137-141 (1997) https://doi.org/10.1016/S0925-4005(97)80286-9
  9. J. P. Dakin, B. H. Wiegl and H. O. Edwards, 'Progress with Optical Gas Sensors using Correlation Spectroscopy,' Sensors and Actuators B, 29, 87-93 (1995) https://doi.org/10.1016/0925-4005(95)01667-8
  10. H. Alause, F. Grasdepot, J. P. Malzac, W. Knap and J. Hermann, 'Micromachined Optical Thnable Filter for Domestic Gas Sensors,' Sensors and Actuators B, 43, 18-23 (1997) https://doi.org/10.1016/S0925-4005(97)00139-1
  11. F. Grasdepot, J. Suski, H. Alause, W. Knap and J. P. Malzac, 'Domestic Gas Sensor with Micromachined Optical Thnable Filter,' Sensors and Actuators B, 36, 377-380 (1996) https://doi.org/10.1016/S0925-4005(97)80099-8
  12. D. Rossberg, 'Optical Properties of the Integrated Infrared Sensor,' Sensors and Actuators A, 54, 793-797 (1996) https://doi.org/10.1016/S0924-4247(97)80057-X
  13. D. Bauer, M. Heeger, M. Gebhard and W. Benecke, 'Design and Fabrication of a Thermal Infrared Emitter,' Sensors and Actuators A, 55, 57-63 (1996) https://doi.org/10.1016/S0924-4247(96)01250-2
  14. K. Takeuchi, T. Tanaka, M. Ikeda, et al., 'Highly Accurate CO$_{2}$ Gas Sensor Using a Modulation-type Pyroelectric Infrared Detector,' Jpn. J. Appl. Phys., 32, 221-227 (1993) https://doi.org/10.1143/JJAP.32.221
  15. K. Shibata, T. Yokoo, K. Takeuchi, et aI., 'A New-structure IR Gas Sensor,' Jpn. J. Appl. Phys., 26, 1898-1902 (1987) https://doi.org/10.1143/JJAP.26.1898
  16. J. C. Manifacier, J. Gasiot and J. P. Fillard, 'A Simple Method for the Determination of the Optical Constants n, k and Thickness of a Weakly Absorbing Thin Film,' J. Phys., E 9, 1002-1004 (1976)
  17. D. Minkov and R. Swanepoel, 'Computerization of the Optical Characterization of a Thin Dielectric Film,' Opt. Eng., 32, 3333-3337 (1993) https://doi.org/10.1117/12.151287
  18. S. C. Chiao, B. G. Bovard and H. A. Macleod, 'Opticalconstant Calculation over an Extend Spectral Region: Application to Titanium Dioxide Film,' Appl. Opt., 34, 7355-7360 (1995) https://doi.org/10.1364/AO.34.007355
  19. S. S. Yang and T. H. Song, 'An Improved WSGGM-based Narrow Band Model for the CO$_{2}$ 4.3$\mu{m}$ Band,' Int. J. Therm. Sci., 38, 228-238 (1999) https://doi.org/10.1016/S1290-0729(99)80086-6
  20. A. R. Forouchi and I. Bloomer, 'Optical Dispersion Relations for Amorphous Semiconductors and Amorphous Dielectrics,' Phys. Rev. B, 34, 7018-7026 (1986) https://doi.org/10.1103/PhysRevB.34.7018
  21. A. R. Forouchi and I. Bloomer, 'Optical Properties of Crystalline Semiconductors and Dielectrics,' Phys. Rev. B, 38, 1865-1874 (1988) https://doi.org/10.1103/PhysRevB.38.1865
  22. Essential Macleod (Ver. 8.2), Optical Coating Design Program (Thin Film Center Inc)
  23. H. A. Macleod, Thin-film Optical Filters 2nd ed., pp. 234 (Macmillan, New York, 1986)
  24. S. Laux and W. Richter, 'Packing-density Calculation of Thin Fluoride Films from Infrared Transmission Spectra,' Appl. Opt., 35, 97-101 (1996) https://doi.org/10.1364/AO.35.000097
  25. F. Flory, E. Pelletier, G. Albrand and Y. Hu, 'Surface Optical Coatings by Ion Assisted Deposition Techniques: Study of Uniformity,' Appl. Opt., 28, 2952-2959 (1989) https://doi.org/10.1364/AO.28.002952
  26. H. J Cho and C. K. Hwangbo, 'Optical Inhomogeneity and Microstructure of ZrO$_{2}$ Thin Films Prepared by Ion-assisted Deposition,' Appl. Opt., 35, 5545-5552 (1996) https://doi.org/10.1364/AO.35.005545
  27. K. Shibata, T. Yokoo, K. Takeuchi, et al., 'A New-structure IR Gas Sensor,' Jpn. J. Appl. Phys., 26, 1898-1902 (1987) https://doi.org/10.1143/JJAP.26.1898