DOI QR코드

DOI QR Code

Fabrication and Characterization of Ge/B-doped Optical Fiber for UV Poling Applications

UV 폴링용 Ge와 B가 첨가된 실리카 유리 광섬유 제조 및 특성 평가

  • Kim, Bok-Hyeon (Department of Information and Communications, Kwangju Institute of Science and Technology) ;
  • Ahn, Tae-Jun (Department of Information and Communications, Kwangju Institute of Science and Technology) ;
  • Heo, Jong (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Shin, Dong-Wook (Department of Ceramic Engineering, Hanyang University) ;
  • Han, Won-Taek (Department of Information and Communications, Kwangju Institute of Science and Technology)
  • 김복현 (광주과학기술원 정보통신공학과) ;
  • 안태정 (광주과학기술원 정보통신공학과) ;
  • 허종 (포항공과대학교 신소재공학과) ;
  • 신동욱 (한양대학교 세라믹공학과) ;
  • 한원택 (광주과학기술원 정보통신공학과)
  • Published : 2002.01.01

Abstract

An Ge/B-doped optical fiber with high photosensitivity was fabricated to induce large second-order optical nonlinearity by UV poling. It was found that long period fiber gratings were inscribed on the fiber by the 248 nm KrF excimer laser irradiation with pulse energy of 116 mJ/$cm^2$ and pulse frequency of 10 Hz without hydrogen loading treatment. The photosensitivity was measured by use of the long period fiber grating pair method and the refractive index change of 3.3$10{\times}^{-3}$ was found to be induced in the core of the optical fiber by the KrF excimer laser irradiation of 8.67 kJ/$cm^2$. An H-shaped optical fiber was also fabricated for the UV poling through optimization of the fiber drawing condition.

2차 비선형 광특성을 유도하기 위한 UV 폴링용 Ge와 B가 첨가된 광민감성 광섬유를 제조하였다. 248 nm KrF 엑시머 레이저 조사에 의하여 수소처리 없이 장주기 격자를 형성할 수 있었다. 116 mJ/$cm^2$의 펄스 에너지와 10 Hz의 조사 빈도로 1분간 광민감성 광섬유에 레이저를 조사할 경우 -4 dB의 큰 band rejection 특성을 얻을 수 있었다. 제조된 광섬유의 광민감성은 장주기 격자쌍 방법을 이용하여 측정하였으며, 8.67 kJ/$cm^2$의 fluence로 KrF 엑시머 레이저를 조사할 경우 3.3${\times}10^{-3}$의 큰 코어 굴절률 변화를 얻었다. 또한 UV 폴링 시에 광섬유 코어에 고전압을 쉽게 인가할 수 있는 H자 형상의 광섬유를 인출조건의 최적호를 통하여 제조하였다.

Keywords

References

  1. P. G. Kazansky, P. St. J. Russell and H. Takebe, 'Glass Fiber Poling and Applications,' J. Lightwave Tech., 15 1484-93 (1997) https://doi.org/10.1109/50.618381
  2. M. V. Bergot, M. C. Farries, M. E. Fermann, L. Li, L. J. Poyntz Wright, P. St. J. Russell and A. Smithson, 'Gen-eration of Permanent Opdcally Induced Second order Non-linearities in Optical Fibers by Poling,' Opt. Lett., 13 592-95 (1988) https://doi.org/10.1364/OL.13.000592
  3. R. A. Myers, N. Mukherjee and S. R. J. Brueck, 'Large Second order Nonlinearity in Poled Fused Silica,' Opt. Lett., 16 1732-34 (1991) https://doi.org/10.1364/OL.16.001732
  4. T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole and M. Sceats, 'Electrooptic Modulation in Germanosilicate Fiber with UV excited Poling,' EIectron. Lett., 31 573-75 (1995) https://doi.org/10.1049/el:19950384
  5. W. Xu, P. Blazkiewicz and S. Fleming, 'Silica Fiber Poling Technology,' Adv. Mater., 13 1014-18 (2001) https://doi.org/10.1002/1521-4095(200107)13:12/13<1014::AID-ADMA1014>3.0.CO;2-B
  6. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymers, Wiley, New York, 1991
  7. N. Mukherjee, R. A. Myers and S. R. J. Brueck, 'Dynamics of Second harmonic Generation in Fused Silica,' J. Opt. Soc. Am. B, 11 665-69 (1994) https://doi.org/10.1364/JOSAB.11.000665
  8. P. G. Kanzansky and P. St. J. Russel, 'Thermally Poled Glass: Frozen in EIectric Field or Oritented Dipoles ?,' Opt. Communs., 110 611-14 (1994) https://doi.org/10.1016/0030-4018(94)90260-7
  9. W. Xu, J. Arentoft, D. Wong and S. Fleming. 'Evidence of Space charge Effects in Thennal Poling,' 1EEE Photon. Technol. Lett., 11 1265-67 (1999) https://doi.org/10.1109/68.789712
  10. M. Takahashi, T. Fujiwara, T. Kawachi and A. J. Ikushima, 'Defect Formation in GeO$_{2}-SiO_{2}$ Glass by Poling with ArF Laser Excitation,' Appt. Phys. Lett., 71 993-95 (1997) https://doi.org/10.1063/1.119749
  11. B. P. Antonyuk, V. B. Antonyuk and A. A. Frolov, 'Charge Transfer Excitions in Gedoped Silica Fibers and their Response to Static Electric Field,' Opt. Communs., 174 427-34 (2000) https://doi.org/10.1016/S0030-4018(99)00727-0
  12. A. De Francesco and G. E. Tow, 'Modeling of Photoinduced Charge Separation in Germanosilicate Optical Fibers During (UV excited Poling,' J. Quantum Electron., 36 59-69 (2000) https://doi.org/10.1109/3.817639
  13. D. L. Wililams, B. J. Ainslie, J. R. Annitage, R. Kashyap and R. Campbell, 'Enhanced UV Photosensitivity in Boron Codoped Germanosilicate Fibres,' EIectmn. Lett., 29 45-7 (1993)
  14. T.-J. Ahn, B. H. Kim, B. H. Lee, Y. Chung, U. C. Paek and W.-T. Han, 'Measurement of Refractive index Change Upon UV Irradiation of Optical Fiber Using a LPG Pair,' in Technical Digest of 5th Optoelectronics and Communications Conference (Institute of Electronics, Information and Communication Engineers, Tokyo, 2000), Paper 12P-45
  15. B. H. Lee and J. Nishii, 'Dependence of Fringe Spacing on the Grating Separation in a Long period Fiber Grating Pair,' Appt. Opt., 38 3450-59 (1999) https://doi.org/10.1364/AO.38.003450
  16. T. Erdogan, 'Fiber Grating Spectra,' J. Lightwave Technol., 15 1277-94 (1997) https://doi.org/10.1109/50.618322
  17. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan and J. E. Sipe, 'Long period Fiber Gratings as Band rejection Filters,' J. Ltghtwave Technol, 14 58-65 (1996) https://doi.org/10.1109/50.476137