DOI QR코드

DOI QR Code

Synthesis of ZnWO4 Nanopowders by Polymerized complex Method

Polymerized complex법에 의한 ZnWO4 nanopower의 제조

  • Ryu, Jeong-Ho (Department of Ceramic Engineering, CPRC, Hanyang University) ;
  • Lim, Chang-Sung (Institute of Advanced Materials, CPRC, Hanseo University) ;
  • Auh, Keun-Ho (Department of Ceramic Engineering, CPRC, Hanyang University)
  • 류정호 (한양대학교 세라믹공학과 CPRC) ;
  • 임창성 (한서대학교 신소재연구소 CPRC) ;
  • 오근호 (한양대학교 세라믹공학과 CPRC)
  • Published : 2002.01.01

Abstract

ZnWO$_4$ nano-powders were successfully prepared by polymerized complex method using zinc nitrate and tungstic acid as starting materials. In order to investigate the thermal decomposition and crystallization process, the polymeric precursors were heat-treated at temperatures from 300 to 600$^{\circ}$C for 3 h, and the heat-treated powders were characterized by XRD and FTIR. The surface morphology of the heat-treated powders were observed using SEM and TEM. The crystallite size was measured by X-ray analysis. Crystallization of the ZnWO$_4$ powders were detected at 400$^{\circ}$C and entirely completed at a temperature of 600$^{\circ}$C. The particles heat-treated 400 and 500$^{\circ}$C showed primarily co-mixed morphology with spherical and silkworm-like forms, while the particles heat-treated at 600$^{\circ}$C showed more homogeneous morphology. The average crystalline size were 19.9∼24.nm showing an ordinary tendency to increase with the temperatures from 400 to 600$^{\circ}$C.

착체중합법을 사용하여 nano-size의 ZnWO$_4$ powder를 제조하였다. 금속이온물질로서 znic nitrate와 tungstic acid를 사용하였으며 용매는 ethylene glycol을 사용하였다. 300$^{\circ}$C부터 600$^{\circ}$C의 온도 영역에서 하소한 분말에 대해 열분해 및 결정화 과정, 분말의 형상, 입도 변화 양상을 분석하였다. 일반적인 고상합성시에 필요한 온도보다 현저히 낮은 온도인 400$^{\circ}$C에서 ZnWO$_4$상이 생성되었으며, 600$^{\circ}$C에서 완전한 경정상을 얻을 수 있었다. 합성된 분말은 400$^{\circ}$C와 500$^{\circ}$C에서 원형과 silk-worm 형태가 혼합된 입자 형상을 나타내었고, 600$^{\circ}$C에서보다 균질한 양상을 나타내었다. 합성된 분말의 입자 크기는 400$^{\circ}$C∼600$^{\circ}$C의 온도영역에서 19.9∼24.2nm 정도로 매우 미세하였으며, 하소 온도가 증가함에 따라 분말의 결정상과 입도가 증가하는 것을 확인하였다.

Keywords

References

  1. L. G. Van Uitert and S. Preziosi, 'Zinc Tungstates for Microwaves Maser Applications,' J. Appl. Phys., 33 2908-09 (1962) https://doi.org/10.1063/1.1702581
  2. I. Foeldvari, A. Peter, S. Keszthelyi-landori, R. Capelletti, I. Cravero and F, Schmidt, 'Improvement of the Quality of ZnWO$_4$ Single Crystals for Scintillation Applications,' J. Crystal Growth, 79 714-19 (1986) https://doi.org/10.1016/0022-0248(86)90543-9
  3. P. F. Schofield, K. S. Knight and G. Cressey, 'Neutron Pow-der DiHraction Study of the Scintillator Material ZnWO$_4$,'J. Mat. Sci., 31 2873-77 (1996) https://doi.org/10.1007/BF00355995
  4. A. Kuzmin and J. Purans, 'Local Atomic and Electronic Sturcture of Tungsten Ions in AWO$_4$ Crystals of Scheelite and Wolframite Types,' Radiation Measurements, 33 583-86 (2001) https://doi.org/10.1016/S1350-4487(01)00063-4
  5. A. R. Phani, M. passacantando, L. Lozzi and S. Santucci, 'Structural Characterization of Bulk ZnWO$_4$ Prepared by Solid State Method,' J. Mat. Sci., 35 4879-83 (2000) https://doi.org/10.1023/A:1004809804206
  6. A. Sen and P. Pramanik, 'A Chemical Synthetic Route for the Preparation of Fine-grained Metal Tungstate Powdepr (M=Ca, Co, Ni, Cu, Zn),' J. Eur. Ceram. Soc., 21 745-50 (2001) https://doi.org/10.1016/S0955-2219(00)00265-X
  7. M. P. Pechini, U.S. Pat.. No. 3330697, July 11, 1967
  8. M. Kakihana and M. Yasuoka, 'Polymerized Complex Route of the Synthesis of Multi-component Oxides,' Sol-Gel Sci. & Tech., edited by E. J. A. Pope, S. Sakka and L. C. Klein, Ceram. Trans., 55 65-73 (1995)
  9. S. R. Kim, Y. H. Kim, S. J. Jung and D. H. Riu, 'Synthesis and Characterization of Silicon Substituted Hydroxyapa-tite,' J. Kor. Ceram. Soc., 38 [12] 1132-36 (2001)
  10. B. I. Lim, S. Y. Choi, H. J. Jung and Y. J. Oh, 'Powder Syn-thesis and Sintering Behavior of Hydroxyapatite by Citrate method.' J. Kor. Ceram. Soc., 33 [9] 1003-11 (2001)
  11. S. J. Jun, S. Y. Kim and J. H. Han, 'Synthesis of Stoichio-metric Hydroxyapatitc Powder by $CO_{3^{2-}}$ Substitution Dur-ing Precipitation,' J. Kor. Ceram. Soc., 35 [3] 209-18(1998)
  12. P. A. Lessing, 'Mixed-cation Oxide Powders via Polymeric Precusors,' Am. Ceram. Soc. ButI, 68 [5] 1002-09 (1989)
  13. K-N. P. Kumar, K. Keizer and A. J. Burggraaf, 'Textural Evolution and Phase Transformation in Titania Mem-branes.'part I. Unsupported membranes,' J. Mat. Chem., 31141-49 (1993)
  14. M. Bonanni, L. Spanhel, M. Lerch, E. Fuglein and G. Muller, 'Conversion of Colloidal ZnO-WO$_3$ Hetroaggre-gates into Strongly Blue Luminescing ZnW0$_4$ Xerogels and Films,' Chem. Mat., 10 304-10 (1998) https://doi.org/10.1021/cm9704591

Cited by

  1. Green synthesis and characterization of zinc oxide nanoparticles using carboxylic curdlan and their interaction with bovine serum albumin vol.6, pp.81, 2016, https://doi.org/10.1039/C6RA15395J
  2. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities pp.1615-7605, 2018, https://doi.org/10.1007/s00449-017-1840-9