DOI QR코드

DOI QR Code

Mechanical Properties of Porous Reaction Bonded Silicon Carbide

반응소결 탄화규소 다공체의 기계적 특성

  • Hwang, Sung-Sic (Department Automotive Engineering, Kookmin University) ;
  • Park, Sang-Whan (Multi-Functional Ceramics Research Center, KIST Seoul) ;
  • Han, Jae-Ho (Multi-Functional Ceramics Research Center, KIST Seoul) ;
  • Han, Kyung-Sop (Multi-Functional Ceramics Research Center, KIST Seoul) ;
  • Kim, Chan-Mook (Department Automotive Engineering, Kookmin University)
  • 황성식 (국민대학교 자동차공학과) ;
  • 박상환 (한국과학기술연구원 복합기능 세라믹스 연구센터) ;
  • 한재호 (한국과학기술연구원 복합기능 세라믹스 연구센터) ;
  • 한경섭 (한국과학기술연구원 복합기능 세라믹스 연구센터) ;
  • 김찬목 (국민대학교 자동차공학과)
  • Published : 2002.01.01

Abstract

Porous reaction bonded SiC with high fracture strength was developed using Si melt infiltration method for use of the support layer in high temperature gas filter that is essential to develop the next generation power system such as integrated gasification combined cycle system. The porosity and pore size of porous RBSC developed in this study were in the range of 32∼36% and 37∼90 ${\mu}m$ respectively and the maximum fracture strength of porous RBSC fabricated was 120 MPa. The fracture strength and thermal shock resistance of porous RBSC fabricated by Si melt infiltration were much improved compared to those of commercially available porous clay bonded SiC due to the formation of the strong SiC/Si interface between SiC particles. The characteristics of pore structure of porous RBSC was varied depending on the amounts of residual Si as Well as the size of SiC particle used in green body.

차세대 발전 시스템에서 사용되는 고온 가스 필터용 지지층 소재를 제조하기 위하여 용융 Si 침윤 방법으로 기공율이 32∼36%, 주기공 크기가 37∼90 ${\mu}m$ 범위를 갖는 고강도 다공질 반응소결 탄화규소(RBSC)를 개발하였다. 반응소결 탄화규소 다공체의, 최대 파괴강도는 120MPa이었으며, 용융 Si 침윤 방법으로 제조된 반응소결 탄화규소 다공체에서는 SiC 입자 사이에 SiC/Si로 이루어진 기지상이 형성되어 있기 때문에 파괴 강도 및 열충격 특성이 점토 결합 탄화규소 다공체 보다 우수하였다. 반응소결 탄화규소 다공체의 기공율 및 기공 크기는 잔류 Si의 양 및 성형체에 사용한 SiC 입자 크기에 따라 다르게 나타났다.

Keywords

References

  1. P. Pastila, V. Helanti, A. P. Nikkila and T. Mantyla, 'Environmental Effects on Microstructure and Strength of SiC based Hot Gas Filters,' J. ofthe European Ceram. Soc., 21[9] 1261-68 (2001) https://doi.org/10.1016/S0955-2219(00)00326-5
  2. 'Control of GasiSer Mercury Emissions in a Hot Gas Filter:The Effect of Temperature,' Fuet and Energy Abstracts, 43[2] 107-8 (2002)
  3. J. H. Oh, B. J. Oh, D. J. Choi, G. H. Kim and H. S. Song,'High The Effect of Input Gas Ratio on the Growth Behavior of Chemical Vapor Deposited SiC Films,' J. Mat. Sci.,36 [7] 1695-1700 (2001) https://doi.org/10.1023/A:1017508205412
  4. P. Popper, 'The Preparation of Dense Self-bonded SiliconCarbide,' Spec. Ceram., 207-19 (1960)
  5. H. W. Kim, H. E. Kim, H. S Song and J. W. Ha, 'Effect of Oxidation on the Room temperature Rexural Strength of Reaction bonded Silicon Carbides,' J. Am. Ceram. Soc., 82[6] 1601-4 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01967.x
  6. J. N. Ness and T. F. Page, 'Microstructural Characterizationof Reaction bonded Silicon Carbide,' J. Mat. Sci., 21 1377-97 (1998) https://doi.org/10.1007/BF00553278
  7. C. B. Lim, 'Microstructure Control of Reaction SinteredSilicon Carbide,' Ph. D. thesis, Tokyo Inst. of Tech., September (1989)
  8. K. S. Seo and S. W. Park, 'Fabrication of Porous RBSC by Si Melt Infiltration,' J. Kor. Ceram. Soc., 37[11] 1119-25 (2000)
  9. H. Osada, A. Kani et al., 'Bending Strength and ElectricalResistivity of Porous SiSiC Ceramics,' Ceram. Trans., 31243-47 (1993)
  10. U.S. patent US4532091
  11. U.S. patent US4564496
  12. U.S. patent US4710428

Cited by

  1. Fabrication of Porous SiC Ceramics by Partial Sintering and their Properties vol.41, pp.7, 2004, https://doi.org/10.4191/KCERS.2004.41.7.541
  2. Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.429