DOI QR코드

DOI QR Code

The fourth-order interference between entangled state photon pairs with different frequencies

진동수가 서로 다른 얽힘상태 광자쌍의 4차 간섭

  • Kim, Heon-Oh (School of Mathematics and Applied Physics, University of Ulsan) ;
  • Ko, Jeong-Hoon (School of Mathematics and Applied Physics, University of Ulsan) ;
  • Kim, Tae-Soo (School of Mathematics and Applied Physics, University of Ulsan)
  • 김헌오 (울산대학교 수학 및 물리기술학부) ;
  • 고정훈 (울산대학교 수학 및 물리기술학부) ;
  • 김태수 (울산대학교 수학 및 물리기술학부)
  • Published : 2002.08.01

Abstract

One of the nonclassical effects in two-photon interference experiments, spatial quantum beating, is observed in fourth-order interference with pairs of photons produced by a spontaneous parametric down-conversion process. When photon pairs in different frequencies $\omega1$ and $\omega2$ are mixed together, and directed to two detectors, the coincidence counts exhibit a cosine modulation with difference frequency | $\omega1$- $\omega2$|. The measured coincidence counts turned out to have an interference pattern with periodicity of 10.45 ㎛ in position or 34.82fs in time delay, which corresponds to the period 2$\pi$/| $\omega1$- $\omega2$| for the beat frequency of 0.29${\times}10^{14}$Hz.

매개하향변환과정에서 동시에 발생한 서로 다른 진동수의 광자쌍을 이용한 4차 간섭실험에서 비고전적인 맥놀이 효과를 측정하였다. 각진동수가 각각 $\omega1$$\omega2$인 광자쌍을 빔분할기에서 중첩시키고, 빔분할기의 두 출구에 놓인 두 검출기로 동시계수 할 때, 두 광자가 빔분할기에 도달하는 시간 간격에 따라 cos($\omega1$-$\omega2$)의 함수로 동시계수의 변화를 나타내었다. 두 광자의 파장 차이가 41㎚일 때 측정된 맥놀이 진동수 ($\omega1$-$\omega2$)/2$\pi$는 0.29${\times}10^{14}$㎐이었고, 진동수 차이에 해당하는 두 광자의 시간간격은 34.82fs로 측정되었다.

Keywords

References

  1. C. K Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett., Vol. 59, no. 18, pp. 2044-2046, 1987. https://doi.org/10.1103/PhysRevLett.59.2044
  2. R. Ghosh and L. Mandel, “Observation of nonclassical effects in the interference of two photons,” Phys. Rev. Lett., vol. 59, no. 17, pp. 1903-1905, 1987. https://doi.org/10.1103/PhysRevLett.59.1903
  3. Z. Y. Ou and L. Mandel, “Violation of Bell's inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett., vol. 61, no. 1, pp. 50-53, 1988; Z. Y. Ou and L. Mandel, “Further evidence of nonclassical behavior in optical interference,” Phys. Rev. Lett., vol. 62, no. 25, pp. 2941-2944, 1989. https://doi.org/10.1103/PhysRevLett.62.2941
  4. 박정권, 박구동, 김태수, 홍순철, 나상균, 홍정기, "매개하향 변환과정에서 발생되는 광자쌍의 4차간섭현상," 새물리 제33권 1호, pp. 37-42, 1993
  5. 하 향, 김태수, 김희상, 홍정기, "두 광자 간섭실험에서 "양자지우개" 효과," 새물리 제35권 3호, pp. 322-328, 1995.
  6. Z. Y. Ou, E. C. Gage, B. E. Magill, and L. Mandel, “Observation of beating between blue and green light,” Optics Commun., vol. 69, no. 1, pp. 1-5, 1988. https://doi.org/10.1016/0030-4018(88)90058-2
  7. Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photondetectors,” Phys. Rev. Lett., vol. 61, no. 1, pp. 54-57, 1988; Z. Y. Ou and L. Mandel, “Determination of the average time interval between two photons with sub-optical period accuracy,” Optics News, December, p. 23, 1988. https://doi.org/10.1103/PhysRevLett.61.54
  8. J. G. Rarity and P. R. Tapster, “Two-color photons and nonlocality in fourth-order interference,” Phys. Rev. A, vol. 41, no. 9, pp. 5139-5146, 1990. https://doi.org/10.1103/PhysRevA.41.5139
  9. Y. H. Shih, and A. V. Sergienko, “Observation of quantum beating in a simple beam-splitting experiment: Two-particle entanglement in spin and space-time,” Phys. Rev. A, vol. 50, no. 3, pp. 2564-2568, 1994. https://doi.org/10.1103/PhysRevA.50.2564
  10. T. S. Larchuk, R. A. Compos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, and M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett., vol. 70, no. 11, pp. 1603-1606, 1993. https://doi.org/10.1103/PhysRevLett.70.1603
  11. E. Schr dinger, “Die gegenw rtige Situation in der Quantenmechanik,” Naturwissenschaften, vol. 23, pp. 807-812, 1935. https://doi.org/10.1007/BF01491891
  12. A. Einstein, B. Podolsky, and N. Rosen, “Can quantummechanical description of physical reality be considered complete?,” Phys. Rev., vol. 47, pp. 777-780, 1935. https://doi.org/10.1103/PhysRev.47.777
  13. D. Bohm, Quantum Theory, (Prentice-Hall, New York, 1951).
  14. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London), vol. 390, no. 11, December, pp. 575-579, 1997; D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. vol. 80, no. 6, pp. 1121-1125, 1998. https://doi.org/10.1103/PhysRevLett.80.1121
  15. T. Jannewein et al., “Quantum cryptography with entangled photons,” Phys. Rev. Lett. vol. 84, no. 20, pp. 4729-4732, 2000; W. Tittle et al., “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. vol. 84, no. 20, pp. 4737-4740, 2000. https://doi.org/10.1103/PhysRevLett.84.4737
  16. D. N. Klyshko, Photons and Nonlinear Optics, (New York, Gordon and Breach, 1988) p. 325; D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. vol. 25, no. 2, pp. 84-87, 1970. https://doi.org/10.1103/PhysRevLett.25.84
  17. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. vol. 130, no. 6, pp. 2529-2539, 1963. https://doi.org/10.1103/PhysRev.130.2529
  18. Taesoo Kim, Jongtae Shin, Yang Ha, Heonoh Kim, Goodong Park, Tae Gon Noh, and Chung Ki Hong, “The phase-sensitivity of a Mach-Zehnder interferometer for the Fock state inputs,” Opt. Comm. vol. 156, pp. 37-42, 1998. https://doi.org/10.1016/S0030-4018(98)00428-3