DOI QR코드

DOI QR Code

Design and characterization of conductive transparent filter using [TiO2|Ti|Ag|TiO2] multilayer

[TiO2|Ti|Ag|TiO2] 다층구조를 이용한 전도성 투과필터의 설계 및 특성분석

  • Published : 2002.08.01

Abstract

We have designed conductive transparent filters using a low-emissivity coating such as [dielectric|Ag|dielectric] for display applications. The design is the repetition of [$TiO_{2}$|Ti|Ag |$TiO_{2}$] to increase the transmittance in the visible and decrease the transmittance in the near IR. The conductive transparent filters are deposited by a radio frequency(RF) magnetron sputtering system. The optical, structural and electrical properties of the filters were investigated and the optical spectra are compared with simulated spectra. The thickness of the deposited Ag films is above 13 ㎚ to increase the conductivity and that of $TiO_{2}$ films is 24 ㎚ to increase the transmittance in the visible range. Ti blockers are employed to prevent the Ag films from being oxidized by an oxygen gas during the reactive sputtering process. Also, it is shown that the thicker Ti film is necessary as the period increases. Finally, a filter with repetition of the basic structure three times shows the better cut-off near infrared(NIR) and the sheet resistance as low as 2Ω/□ which is enough to shield an unnecessary electromagnetic waves for a display panel.

디스플레이 기기에 사용할 수 있는 전도성 투과필터를 저방출(low-emissivity) 코팅인 [유전체|Ag|유전체] 구조를 이용하여 설계하였다. [$TiO_{2}$|Ti|Ag|$TiO_{2}$] 구조를 반복하고 어드미턴스 방법을 이용하여 가시광선 영역의 투과율을 높이고, 근적외선의 투과율은 낮게 하였다. 전도성 투과필터를 radio frequency(RF) 마그네트론 스퍼터링 방법으로 증착하고 설계한 스펙트럼과 비교하였으며, 필터의 광학적, 구조적, 전기적 특성들을 조사하였다. Ag 박막의 두께는 전기전도성을 높이기 위해 13㎚ 이상으로 증착하고, $TiO_{2}$박막은 가시광선 영역에서 투과율이 최대가 되는 24㎚로 증착하였다. 또한 Ag 박막의 산화를 막기 위해 매우 얇은 Ti 산화방지막을 증착하였으며, 다층구조로 갈수록 산화방지막의 두께를 더 두껍게 증착해야 하는 것을 확인하였다. 최종적으로 [$TiO_{2}$|Ti|Ag|$TiO_{2}$] 기본구조를 3번 반복하여 증착한 필터는 근적외선 차단 효과가 우수하고, 전자파 장해(electromagnetic interference; EMI)를 효과적으로 방지할 수 있는 2Ω/□ 이하의 낮은 면저항을 보였다.

Keywords

References

  1. J. J. Finley, “The evolution of solar infrared reflective glazing in automobiles,” in 44th Annual Technical Conference Proc., SVC, Philadelphia, Pennsylvenia, USA, pp. 193-203, 2001.
  2. P. H. Berning, “Principles of design of architectural coatings,” Appl. opt., vol. 24, pp. 4127-4141, 1983. https://doi.org/10.1364/AO.22.004127
  3. H. J. Gläser, Large area glass coating (Von Ardenne, Dresden, 2000), pp. 206, 220-226.
  4. H. Schilling, J. Szczyrbowski, M. Ruske, and W. Lenz, “New layer system family for architectural glass based on dual twin-magnetron sputtered TiO2,” in 41th Annual Technical Conference Proc., SVC, Boston, MA, USA, pp. 165-173, 1998.
  5. O. Treichel, V. Kirchhoff, and G. Bräuer, “The influence of the barrier layer on the mechanical properties of IR-reflecting (low-E) multilayer systems on glass,” in 43rd Annual Technical Conference Proc., SVC, Denver, USA, pp. 121-126, 2000.
  6. R. Hermann and G. Bräuer, in R. E. Hummel and K. H. Guenther (ed.), Handbook of Optical Properties vol. 1 (CRC, Boca Raton, Fla., 1995), pp. 174-175.
  7. 이경준, 이진구, 박주동, 김진현, 김영환, 오태성, "확산방지막에 따른 TiO_2/M/Ag/M/TiO_2 투명 열전연 박막의 광학적 성질," 한국진공학회지, 제5권 2호, pp. 147-155, 1996.
  8. R. Dannenberg and D. Glenn, “Microstructural comparison of Ag films grown on amorphous TiO2 and polycrystalline ZnO,” in 44th Annual Technical Conference Proc., SVC, Philadelphia, Pennsylvenia, USA, pp. 218-224, 2001.
  9. H. Ohsaki and Y. Kokubu, “Global market and technology trends on coated glass for architectural, automotive and display applications,” Thin Solid Films, vol. 351, pp. 1-7, 1999. https://doi.org/10.1016/S0040-6090(99)00147-9
  10. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, Bristol, UK, 2001), pp. 37-85, 579, 583-585.
  11. 황보창권, 박막광학(다성, 서울, 2001), pp. 57-68, 110-118, 184-196, 313-318.
  12. P. Grosse, R. Hertling, and T. Müggenberg, “Design of low emissivity systems based on a three-layer coating,” Journal of Non-Crystalline Solids, vol. 218, pp. 38-43, 1997. https://doi.org/10.1016/S0022-3093(97)00130-0
  13. B. T. Sullivan and K. L. Byrt, “Metal/dielectric transmission interference filters with low reflectance. 2. Experimental results,” Appl. Opt., vol. 34, pp. 5684-5694, 1995. https://doi.org/10.1364/AO.34.005684
  14. D. W. Linch, W. R. Hunter, and G. W. Ribarsky, “Comments on the optical constants of metals and an introduction to the data for several Metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350-368.
  15. H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, and M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films, vol. 351, pp. 184-189, 1999. https://doi.org/10.1016/S0040-6090(99)00306-5
  16. G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Deposition and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films, vol. 306, pp. 92-99, 1997. https://doi.org/10.1016/S0040-6090(97)00250-2