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Postbuckling Analysis of Thin Plates under Impact Loading
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Abstract

An explicit direct time integration method based solution algorithm is proposed to predict
dynamic postbuckling response of thin plates. Based on the von Kamman's plate equations
and Marquerre’s shallow shell theory, a rectangular plate finite element is formulated and
utilized in this study. The element formulation takes into account geometrical nonlinearity
and initial deflection of plates. The solution algorithm employs the central difference method.
Using the computer program developed by the authors, dynamic postbuckling behavior of
elastic thin plates under impact loading is investigated by considering the time variation of
load and load duration. The efficiency of the proposed solution algorithm is examined through

illustrative numerical examples.
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1. INTRODUCTION

In recent years, due to the availahility of high
strength  structural materials, many different
types of thin-walled members have often
been used as integrated parts of structures.
Thin-walled structural elements, when subjected
to compressive stresses, are susceptible to
buckling. In general, due to the postbuckling
strength of plate elements, thin-walled members
continue to resist stresses well above the local
buckling stress. Since most elastic thin plates
buckle at stresses well below the yield

strength of the material, the inclusion of

postbuckling  strength in the design of
thin-walled  plate elements is  economically
essential.

The postbuckling analysis of plate elements
is only possible through nonlinear analysis, which
deals with the large deflection plate equations. In
methods,
complicated nonlinear equations are no longer

the finite  element mathematically
intractable. Thus, a large number of finite
element analysis procedures employing many
different types of element have been developed
for postbuckling analysis of plate elements.
Currently, most of the existing analysis procedures
employ the load-deflecion andlysis procedure to
determine  postbuckling
(Gallagher et al. 1971).

In the existing postbuckling analysis procedures,
dynamic loads are not generally considered as a
part of the problem. In practice, however,

strength  of  plates

thin-walled members are subjected to static as
well as dynamic loads. It is commonly recognized
that a structural compression member subjected
to transient loads may undergo dynamic
instability. In a certan crcumstance, a suddenly
applied transient load can cause buckling of
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thin-walled compression members, even Wwhen
its value is smaller than the static buckling
load (Hoff 1967). Therefore, buckling analysis of
plates often requires not only the determination
of postbuckling strength, but a complete dynamic
response of plates.

In this paper, postbuckling analysis of thin
plates under impact loading is presented. The
present study makes use of a rectangular
plate element formulated by Kim (1997). The
element  formulation takes into account geometrical
nonlinearity and initial deflection of plates. The
explicit direct time integration method 1is
utilized to overcome the difficulty in nonlinear
transient analysis. Using the central difference
method a computer code is developed, and its
validity is verified through illustrative examples.
Dynamic postbuckling behavior of elastic thin
plates under impact loading is investigated by
considering the time variation of load and
load duration. Dynamic loading  parameters
which play an important role in predicting the
postbuckling  response of thin plates are

identified.
2. DESCRIPTION OF SCOLUTION METHCD

A general form of the differential equation
of motion of an idealized structure can be
semi—discretized using the finite element method
with respect to space coordinates, and written
in matrix form as (Bath 1932)

[MI{D}+ [CI{D}+ [KI{D} = {F,} D

where [M], [C], and [K] are the mass,
damping, and stiffness matrices of the structure,
respectively. {D} is the nodal  displacement  vector,

and {D} and {D)} are the corresponding nodal



velocity and  acceleration  vectors of the structure,
respectively.  {Fex} is a time dependent external
force vector of the structure.

In order to reflect the time dependent nature
of the problem, by denoting the -current
and previous time steps by t+tAt and t,
respectively, the semi-discretized matrix equations
of motion in Eq. (1) can be rewritten as

(M (D} "+ [KI{D}Y = {F.} """ (@

It is noted that an arbitrary damping effect
is excluded in the above expression. [M] is
assumed to be time independent.

In the direct time integration methods, the
space discretized matrix governing equation of
a structure 1s solved by using either the
implicit direct time integration method or the
explicit direct time integration method (Bathe
1982). In the implicit method, the information
at the current time step is obtained by iteratively
adjusting the governing equation until internal
and external equilibrium conditions are satisfied
for that step. This method requires a great
deal of additional computational effort in  solving
the simultaneous linear equations for every
time step.

Whereas in the explicdt method, the information
at the current time step is obtained by directly
solving the equation of motion at the previous
time step. Hence, the solution of explicit
method is obtained in a rather explicit and
direct manner. It is noted, however, that a
major drawback of the explicit method is in its
mefficiency in inducing viable static solutions.

In explicit method of formulation, the element
internal force vector can explicitly be calculated
by (Cook et al. 1939)

() ™ I/[B]T{o} dv @

where [B] is the element strain-displacement
relaion matrix, {7} the element stress vector,
and V the volume of the element. Hence, in
explicit method, the governing matrix equation
of the structural system in Eq. (2) can be

rewritten as

[M] {D} t+At: {ng} t+ 4t {Fm}t (4)

in which {Fin} is the internal force vector of
the structure.

Knowing the structural external force vector
at the current time step, the structural nodal
acceleration vector can explicitly be computed

as

{D} t+At: [M] 71({Fex} t+ 4t {Fin}t) (5)

To obtain the solution, it is necessary to
integrate Eq. (5) twice through the time
space. The most commonly used operator in
the explicit method 1is the central difference
operator (Belytschko and Hsieh 1973). In this
study, the equations of motion are integrated
explicitly in time by the central difference
method, in which the structural nodal velocity
and displacement are computed as (Bath
1982)

{D} t+4ar _ {D}t_l_ %At[{D}t_l_ {D} t+At] (6)
and

(D} ¥ = (D} + At{D)' + émz{b}f %
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In the above, the structural nodal degrees of
freedom are obtained without solving  simultaneous
equations, which is necessary in the implicit
method. Since the structural —stiffness matrix
needs not be formed or stored, the explicit
method can treat large scale problems with
comparatively modest computer storage
requirements.

In all cases of problems, the explicit method
requires numerical integration along the loading
path at high precision. Thus, many steps of
numerical  integration are always required.
Major disadvantage of the explicit method
compared to the implicit method is that the
explicit method requires very small time step for
numerical  stability  requirements.  Furthermore,
{Fin} is needed to be recalculated at every
time step even though the stiffness matrix is
not changed. Therefore, the explicit method 1is
suitable for only some special class of problems
such as transient analysis of nonlinear problems.

3 FORMULATION OF ELEMENT EQUATIONS

3.1 Element Description

plate finite element developed by Kim (1997)
is reformulated using the explicit method of
formulation. To be able to take into account
geometrical nonlinearity and initial  deflection
of the plates, the element is formulated based
on the von Karman's plate equations and
Marquerre’s shallow shell theory.

The element consists of four nodes and six
degrees of freedom at each node; three
in—plane  displacement components u, Vv, and
Bz, and  three
components w, fix, and Ffy (Fig. 1). The

out-of—plane displacement

formulation and capabilities of plate element

are well presented in the reference by Kim
(1997).

3.2 Element Strains

For a thin plate bending theory, the
Green's strain components are (Fung 1965)

{e)={e, &, 7} " ®

The Green's strain vector in Eq. (8) may be
decomposed into

In this study, an isoparametric rectangular {e} = {e,} + {epp +{e) + {er) 9
z(w)
|
e 0
s SR

Fig. 1 Generalized plate displacements in Cartesian coordinates
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where {ep} is the linear in—plane strain,
{eb} is the bending strain due to the bending
curvature of plate, {ei} is the linear contribution
of the initial deflections to in-plane strain using
Marquerre’s  strain  expressions  for shallow  shells,
and {eL} is the nonlinear large deflection strain.
Using the generalized kinematic relationships for
plates, {ep} and {eb} can be determined,

and given as

du, _ ﬁa
o0x 3 82962
v, 2“w,
{61,}+ {Sb}: dy +) —z ayZ
du, = 0v, 2w
oy ox —2z 0xdy
(10a)

where uo, vo, and wo are the middle
surface translations of the plate in the X, v,
and z directions, respectively.

In Eg. (9), {ei} and {eL} can be determined
using the von Karman's large deflection plate
equations and Marquerre’s strain  expressions
for shallow shells, and given as (von Karman
et al. 1932, Marquerre 1933)

ow, ow;
ox 0x
dw, Jw;
{ei} + {SL} - ay ay
ow, 8w,-+ ow; Jow,
ox 0Oy dx 0Jy
l( dw, )2
2\ ox ,
1 %)
+ 2( v (10b)
Jw, Jw,
ox 0y

where wi is the initial middle surface
deflection of the plate in the z direction.

Using the relationships in Egs. (10a) and
(10b), and the shape functions presented in
the reference by Kim (1997), generalized
strain-displacement ~ relation  matrices [B]  of
the element can be constructed.

3.3 Element Stresses and Internal Force
Vectors

In the implicit method of formulation, the
geometrical nonlinearity is included in the
nonlinear strain—displacement ~ relations during
the process of determining the tangent stiffness
matrix. On the other hand, in the explicit
method of formulation, this can be included
efficiently during the process of determining
the internal force vector without a great deal
of additional computational effort.

In the following, the calculations of internal
force vectors for the plate element are briefly
presented.

In accordance with Eq. (9), matrices [B]

may be decomposed into

[Bl=[ B”1+[ B 1+ [B]1+[B,] 11

where [Bop] and [Bob] are the linear in—plane
and bending related  strain-displacement  matrices,
respectively. [Bi] and [BL] are the matrices
that take into account the linear contribution
of the initial deflection to the in—plane strain,
and the change in geometry due to large
deflection, respectively.

In the computer implementation, to avoid
extensive  zero  multiplications, the  element

stress vector is separately calculated as

{o} = {6} + {¢8} + {1 (12)

IZpxErIcEts| Hed Mseo2. 7)) 143

ror



where {mop} is the stress vector due to
in-plane motion of the plate, {mob} the stress
vector due to bending of the plate, and {iL}
the stress vector due to the initial deflections
and the change in the geometry.

Using the element matrix [B] in Eq. (11)
and the constitutive relationship for plates,

each stress vector in Eq. (12) is respectively

given by
{6/} = [D,1[B1{d;} (13a)
{2} = [D,1B’){d,} (13b)

() = D,1(1B] + § [B.])(d,)030

where [Dp] is the matrix containing the
linear-elastic ~ constitutive  relationship  for an
elastic isotropic plate. {di} and {do} are the in—plane
and out-of-plane nodal displacement vectors within
the element, respectively, and given by

{d}y = {u, v, 0,7 (14a)
and
{d) = {w, 0,0, (14b)

In the explicit method of formulation, the
element internal force vector {fin} can be
calculated by wusing Eqg. (3). The element
internal  force vector due to the in-plane

displacement, {fini}, is calculated as
Ui = [ BT (o) + ") av (50

The element internal force vector due to the
out-ofplane displacerment, {fino}, is calculated as
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{me} =
[ B e +1B 6 H+1B,1 6/))aV
(15b)

The integrations in Egs. (15a) and (15b) must
be integrated numerically. In the computer
implementation, the Gaussian quadrature 1is
employed for the numerical integration.

The internal force vector of the element,
{fin}, is the sum of the two internal force

vectors determined above, i.e.,

{fin} = {fml} + {me} (16)
3.4 Element Mass Vector

A lumped mass matrix with the central
difference method is a good combination in
explicit methods (Cook et al. 1989). If the mass
density and thickness within the element are
constant, numerical integration with the 2x2
Gaussian  quadrature rule is known to be
sufficient. Since the lumped mass matrix 1S in
the foom of a dagonal matrix, al terms are
merely  vectors. In  the computer implementation,
the mass vector at the node i is calculated in
the natural coordinates as

tm) = ot [ [ INTTINT | ]| dedy (1D

where P is the mass density, t the
thickness of element, and [Ni] the shape
functions at node 1. ] is the determinant of
the Jacobian matrix, which represents the
area of the element, and & and § are the

natural coordinates.



4. ILLUSTRATIVE NUMERICAL EXAMPLES

Using the refomulated plate element and  central
method, the algorithm  is
coded as the computer program. The validity of
the computer program in predicting postbuckling
response of thin plates under impact loadings is

difference solution

demonstrated through the example problems.

For the example problems considered herein,
a simply supported thin plate subjected to
in-plane compressive impact loads is analyzed.
For a square plate geometry, the length of plate
a=400 in. (10160 mm) and the thickness of
the plate t=15 in. (B1 mm) are assumed
(Fig. 2). The uniformly distributed compressive

y
a q L»X q

a

Fig. 2 Geometry and loading conditions of square plate

P P

t

(a)

loads are applied in the x direction of the
plate. In the analysis, one quarter of the
plate is idealized wusing a 16 finite element
material  properties of the
plate, an elastic modulus  of 30x10" psi
(207x10° MPa) and Poisson’s ratio of 0.333
are assumed. Initial deflection of the plate is

mesh. For the

assumed to represent the locally buckled shape
of the plate. For the simple support boundary
condition, the initially deflected shape of the
plate is represented by a double sinusoidal
function for one quarter of the plate shown in

Fig. 2 as

wi(x,y) = ¢ cosjf cosjél 19

where ¢ is the maximum magnitude of initial
imperfection of the plate. In the analysis, the
maximum magnitude of initial imperfection 1is
taken as c¢=0.1t. Due to the characteristics of
method, the
required. For this example problem, the mass
density of steel, p=7.35x10* lb*secz/in{ is
assumed. The shapes of load considered for the

examples are the ramp and one half sine

the explicit mnertia  force is

phase loadings (Fig. 3).

—t

Td |

(b)

Fig. 3 Impulsive loadings: (a) ramp phase; (b) one half sine wave phase
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In the
dynamic instability problem (Kim 199), the

previous  investigation for  the
ramp, triangular, and one half sine shaped of
impulsive loadings are considered. Since the
shape of one half sine wave load is identified as
a severe loading case, this shape is considered
for the dynamic instability analysis. On the
other hand, the ramp phase loading is utilized
to induce the static behavior.

Gaussian numerical integration rule of 2x2
is used for the calculations of element mass

and internal force vectors.

4.1 Plate under Pseudo-static Loading

Since the explicit method requires very
small time step for numerical integration, this
method s
However, for the purpose of comparison with
the available analytical solutions, the static

solutions are approximated using the pseudo-static

mefficient  for  static  analysis.

loading. The uniform in—plane compressive loads
of q/t=2247 psi (155 MPa) are applied at
the middle surface of the plate in the X
direction, as shown in Fig. 2. The load is
increased using the predetermined  loading
rate of 75x10" Ib/sec. The time step used in
the calculations is t=2.0x10* sec.

The applied load versus the maximum
out-ofplane deflection of the plate is plotted
in Fig. 4 In the figure, the obtained solutions
are compared with the solutions obtained by
the implicit method (Kim 1997) as well as
analytical solutions by Williams and Walker
1977).

The solutions by the explicit method are
smaller than those of both analytical and
implicit  methods untii the load reaches
@/t=2000 psi (138 MPa). This may be due to
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the fact that the explicit method requires
more times than the implicit method to reach
the equilibrium because the explicit method
does not perform iteration during the solution
process. However, in the postbuckling range,
the difference between three sets of solutions

is negligible.

4.2 Plates under Impulsive Loading

The influence of impulsive loading on the
dynamic  postbuckling response of plate is
briefly investigated. As shown in Fig. 3b, a
one half sine shape of impulsive loading
having various load durations is considered.

In the analysis, the magnitude of the impact
load is unchanged, but durations of the load
are changed to obtain the deflection versus
time curves (histograms) for various load
durations. The impact load has the maximum
magnitude of q/t=2247 psi (155 MPa) at
half the load. The duration of each load is
normalized to the first period of free vibration
of the wunloaded plate. For this reason, the
ratio of Ty¢/T, (the ratio between the period of
the applied load and that of the first free
vibration, Ty) is introduced.

2500

2000

1500

1000 —e— implicit method
—=— analytical method
—a— explicit method

Applied load (psi)

500

0 0.5 1 1.5 2 2.5 3
Out-of-plane deflection (inch)

Fig. 4 Comparison of solutions using the explicit method,
implicit method, and analytical method



The natural frequency of the unloaded plate is
in=1401 rad/sec. Hence, the first duration
of free vibration of the plate is T,=0.4482
sec.

421 In—plane response of plate

In the first example, in-plane vibration of
the plate due to impact loading is analyzed.
The maximum in-plane deflection at the plate
edge under static loading is 0.0239 in. (0.607
mm).

Fig. 5 shows the in—plane response curves
for TyTy=05 10, and 125 which correspond
to load durations of 0224 sec, 0448 sec and
0560 sec, respectively. The figure shows that
the influence of load durations on the plate
response is apparent. For the load duration of
Ty/Ty=125, the maximum in-plane response
of the plate is 14 times larger than that of
static loading. However, the influence of load
durations on in-plane response of the plate is

not severe.

4.2.2 Out-of-plane response of plate
In the second example, out-of-plane vibration
of the plate induced by the in-plane impact

0.005

0,005 |
001 |
0015 |
002 |
0025 |

------- Td/Tn=0.5
——Td/Tn=1.0
——Td/Tn=1.25

I
3

In-plane deflection (inch)

n
L5 o
Q8

0O 01 02 03 04 05 06 07 08 09 1
Time (second)

Fig. 5 Influence of load durations on plate response
(in—plane deflection versus time curves for Ty/T=0.5,
1.0, and 1.25)

loading is investigated. The shape of the load
and the duration of impact loading are the
same as those in the previous example.

Fig. 6 shows the maximum out-of-plane
deflection of the plate versus time curves for
the load durations of T¢T.=05 10, and
1.25. TFor short load durations (To/Tu<05),
the dynamic effect is less than the static.
However, as the load duration increases, the
dynamic effect becomes pronounced.

Fig. 7 shows the response of plates for
which the values of Td/Tn are higher than
unity. For relatively higher values of load
duration (T¢/T. > 125, the amplitude of
vibrations yields the deflections, which are 15
times larger than those of static loading. For a
(To/Ty=1.25),
the maximum out-of-plane amplitude is not
further  increased but  the
response is changed.

relatively long load  duration

frequency  of

It is apparent that the dynamic postbuckling
response of the plate i1s greatly influenced by
the load duration. The results indicate that
the value of To/Ty=1.25 is assumed to be the
critical value of dynamic instability for the

plate under consideration.

e Td/Tn=0.5
——Td/Tn=1.0
2} ——Td/ITn=1.25

Out-of-plane deflection (inch)

0 01 02 03 04 05 06 07 08 09 1
Time (second)

Fig. 6 Influence of load durations on postbuckling response
of plate (maximum out-of-plane deflection versus
time curves for Ty/T,=0.5, 1.0, and 1.25)
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Td/Tn=1.25
Td/Tn=1.5
Td/Tn=2.25

Out-of-plane deflection (inch)

0 o1 02 03 04 05 06 07 08 09 1
Time (second)

Fig. 7 Influence of load durations on postbuckling response
of plate (maximum out-of-plane deflection versus
time curves for T¢/Tn=0.25, 1.5, and 2.25)

5. CONCLUSIONS

In this study, dynamic postbuckling behavior
of thin plates under impulsive loadings 1is
analyzed by using the explicit method. Based
on the results of analysis for the selected
exanple poblems, several conclusions can be drawn
and are summarized in the followings.

1) The numerical results show that, for the
plate  postbuckling problems under short
duration of transient loading, the explicit
method is more efficient than the implicit
method.

2) The results of example problems indicate
that the dynamic postbuckling response of
plates is greatly influenced by the load
duration. For a short duration of impact
load, the dynamic effect is less than the
static  effect. However, the influence of
impulsive loading on postbuckling response
is more pronounced as the load duration is
increased.

3) For certain relationships between the load
duration and the natural frequency of the
plate, out-of-plane vibration occur  with
rapidly increasing amplitudes. Once the
load duration reaches its critical value of
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dynamic instability, the maximum dynamic
response of the plate is about 50% larger
than the corresponding static value.

4) The results of example problems have shown
that dynamic postbuckling response of thin
plates is quite different from the corresponding
static response. It is therefore concluded that,
where appropriate, the dynamic nature of
loads must be considered in the structural
problems to provide adequate safety against
dynamic structural instability.
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