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충격하중을 받는 박판의 후좌굴 해석

Postbuckling Analysis of Thin Plates under Impact Loading
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Abstract

An explicit direct time integration method based solution algorithm is proposed to predict 

dynamic postbuckling response of thin plates.  Based on the von Karman's plate equations 

and Marquerre's shallow shell theory, a rectangular plate finite element is formulated and 

utilized in this study.  The element formulation takes into account geometrical nonlinearity 

and initial deflection of plates. The solution algorithm employs the central difference method.  

Using the computer program developed by the authors, dynamic postbuckling behavior of 

elastic thin plates under impact loading is investigated by considering the time variation of 

load and load duration. The efficiency of the proposed solution algorithm is examined through 

illustrative numerical examples.

keywords : thin plate, finite element method, impact load, buckling, postbuckling, dynamic 

instability

요 지

Explicit 직접적분법을 사용하여 충격하중을 받는 박판의 후좌굴거동을 해석할 수 있는 알고리즘을 제안하

였다. von Karman의 대변위 판 이론과 Marquerre의 쉘 이론을 이용하여 유도한 직사각형 평판 유한요소

는 박판의 초기처짐과 기하학적 비선형 거동을 고려할 수 있다. 중앙차분법을 바탕으로 해석 알고리즘을 개발

하였고 이를 프로그램화 시켜, 하중형상과 재하시간이 다른 충격하중에 대하여 박판의 동적 좌굴거동을 해석

하였다. 수치해석 예제를 통하여 Explicit 직접적분법의 특성을 평가하였다.

핵심용어 : 박판, 유한요소법, 충격하중, 좌굴, 후좌굴, 동적좌굴, 초기처짐
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1. INTRODUCTION

In recent years, due to the availability of high 

strength structural materials, many different 

types of thin-walled members have often 

been used as integrated parts of structures. 

Thin-walled structural elements, when subjected 

to compressive stresses, are susceptible to 

buckling. In general, due to the postbuckling 

strength of plate elements, thin-walled members 

continue to resist stresses well above the local 

buckling stress. Since most elastic thin plates 

buckle at stresses well below the yield 

strength of the material, the inclusion of 

postbuckling strength in the design of 

thin-walled plate elements is economically 

essential.

The postbuckling analysis of plate elements 

is only possible through nonlinear analysis, which 

deals with the large deflection plate equations. In 

the finite element methods, mathematically 

complicated nonlinear equations are no longer 

intractable. Thus, a large number of finite 

element analysis procedures employing many 

different types of element have been developed 

for postbuckling analysis of plate elements. 

Currently, most of the existing analysis procedures 

employ the load-deflection analysis procedure to 

determine postbuckling strength of plates 

(Gallagher et al. 1971). 

In the existing postbuckling analysis procedures, 

dynamic loads are not generally considered as a 

part of the problem. In practice, however, 

thin-walled members are subjected to static as 

well as dynamic loads. It is commonly recognized 

that a structural compression member subjected 

to transient loads may undergo dynamic 

instability. In a certain circumstance, a suddenly 

applied transient load can cause buckling of 

thin-walled compression members, even when 

its value is smaller than the static buckling 

load (Hoff 1967). Therefore, buckling analysis of 

plates often requires not only the determination 

of postbuckling strength, but a complete dynamic 

response of plates.

In this paper, postbuckling analysis of thin 

plates under impact loading is presented. The 

present study makes use of a rectangular 

plate element formulated by Kim (1997). The 

element formulation takes into account geometrical 

nonlinearity and initial deflection of plates. The 

explicit direct time integration method is 

utilized to overcome the difficulty in nonlinear 

transient analysis. Using the central difference 

method a computer code is developed, and its 

validity is verified through illustrative examples. 

Dynamic postbuckling behavior of elastic thin 

plates under impact loading is investigated by 

considering the time variation of load and 

load duration. Dynamic loading parameters 

which play an important role in predicting the 

postbuckling response of thin plates are 

identified.

2 . DESCRIPTION OF SOLUTION METHOD

A general form of the differential equation 

of motion of an idealized structure can be 

semi-discretized using the finite element method 

with respect to space coordinates, and written 

in matrix form as (Bath 1982)

[M] {D }+ [C] {D }+ [K] {D } = {Fex}    (1)

where [M], [C], and [K] are the mass, 

damping, and stiffness matrices of the structure, 

respectively. {D} is the nodal displacement vector, 

and {D } and {D } are the corresponding nodal 
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velocity and acceleration vectors of the structure, 

respectively. {Fex} is a time dependent external 

force vector of the structure.

In order to reflect the time dependent nature 

of the problem, by denoting the current 

and previous time steps by t+△t and t, 

respectively, the semi-discretized matrix equations 

of motion in Eq. (1) can be rewritten as

[M] {D } t+Δt+ [K] {D } t= {Fex}
t+Δt    (2)

It is noted that an arbitrary damping effect 

is excluded in the above expression. [M] is 

assumed to be time independent.

In the direct time integration methods, the 

space discretized matrix governing equation of 

a structure is solved by using either the 

implicit direct time integration method or the 

explicit direct time integration method (Bathe 

1982). In the implicit method, the information 

at the current time step is obtained by iteratively 

adjusting the governing equation until internal 

and external equilibrium conditions are satisfied 

for that step. This method requires a great 

deal of additional computational effort in solving 

the simultaneous linear equations for every 

time step. 

Whereas in the explicit method, the information 

at the current time step is obtained by directly 

solving the equation of motion at the previous 

time step. Hence, the solution of explicit 

method is obtained in a rather explicit and 

direct manner. It is noted, however, that a 

major drawback of the explicit method is in its 

inefficiency in inducing viable static solutions.

In explicit method of formulation, the element 

internal force vector can explicitly be calculated 

by (Cook et al. 1989)

{f in}
t =  ⌠
⌡V
[B]T {σ }dV           (3)

where [B] is the element strain-displacement 

relation matrix, {σ} the element stress vector, 

and V the volume of the element. Hence, in 

explicit method, the governing matrix equation 

of the structural system in Eq. (2) can be 

rewritten as

[M] {D } t+Δt= {Fex}
t+Δt- {F in}

t       (4)

in which {Fin} is the internal force vector of 

the structure.

Knowing the structural external force vector 

at the current time step, the structural nodal 

acceleration vector can explicitly be computed 

as

{D } t+Δt= [M] -1 ( {Fex}
t+Δt- {F in}

t
) (5)

To obtain the solution, it is necessary to 

integrate Eq. (5) twice through the time 

space. The most commonly used operator in 

the explicit method is the central difference 

operator (Belytschko and Hsieh 1973). In this 

study, the equations of motion are integrated 

explicitly in time by the central difference 

method, in which the structural nodal velocity 

and displacement are computed as (Bath 

1982)

{D } t+Δt= {D }t+
1
2
Δt [ {D }t+ {D } t+Δt] (6)

and

{D } t+Δt= {D } t+Δt {D }t+
1
2
Δt 2{D }t   (7)
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In the above, the structural nodal degrees of 

freedom are obtained without solving simultaneous 

equations, which is necessary in the implicit 

method. Since the structural stiffness matrix 

needs not be formed or stored, the explicit 

method can treat large scale problems with 

comparatively modest computer storage 

requirements.

In all cases of problems, the explicit method 

requires numerical integration along the loading 

path at high precision. Thus, many steps of 

numerical integration are always required. 

Major disadvantage of the explicit method 

compared to the implicit method is that the 

explicit method requires very small time step for 

numerical stability requirements. Furthermore, 

{Fin} is needed to be recalculated at every 

time step even though the stiffness matrix is 

not changed. Therefore, the explicit method is 

suitable for only some special class of problems 

such as transient analysis of nonlinear problems．

3. FORMULATION OF ELEMENT EQUATIONS

3.1 Element Description

In this study, an isoparametric rectangular 

plate finite element developed by Kim (1997) 

is reformulated using the explicit method of 

formulation. To be able to take into account 

geometrical nonlinearity and initial deflection 

of the plates, the element is formulated based 

on the von Karman's plate equations and 

Marquerre's shallow shell theory.

The element consists of four nodes and six 

degrees of freedom at each node; three 

in-plane displacement components u, v, and 

θz; and three out-of-plane displacement 

components w, θx, and θy (Fig. 1). The 

formulation and capabilities of plate element 

are well presented in the reference by Kim 

(1997). 

 

3.2 Element Strains

For a thin plate bending theory, the 

Green's strain components are (Fung 1965)

{ε }= {ε x ε y γ xy}
T                        (8)

The Green's strain vector in Eq. (8) may be 

decomposed into

{ε }= {ε p}+ {ε b}+ {ε i}+ {εL}            (9)

Fig. 1 Generalized plate displacements in Cartesian coordinates

z(w)

y(v)

x(u)

θx

θyθz
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where {εp} is the linear in-plane strain, 

{εb} is the bending strain due to the bending 

curvature of plate, {εi} is the linear contribution 

of the initial deflections to in-plane strain using 

Marquerre's strain expressions for shallow shells, 

and {εL} is the nonlinear large deflection strain. 

Using the generalized kinematic relationships for 

plates, {εp} and {εb} can be determined, 

and given as

{ε p}+ {ε b}=
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where uo, vo, and wo are the middle 

surface translations of the plate in the x, y, 

and z directions, respectively. 

In Eq. (9), {εi} and {εL} can be determined 

using the von Karman's large deflection plate 

equations and Marquerre's strain expressions 

for shallow shells, and given as (von Karman 

et al. 1932, Marquerre 1938)

{ε i}+ {εL}=
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            (10b)

where wi is the initial middle surface 

deflection of the plate in the z direction.

Using the relationships in Eqs. (10a) and 

(10b), and the shape functions presented in 

the reference by Kim (1997), generalized 

strain-displacement relation matrices [B] of 

the element can be constructed.

3.3 Element Stresses and Internal Force 

Vectors

In the implicit method of formulation, the 

geometrical nonlinearity is included in the 

nonlinear strain-displacement relations during 

the process of determining the tangent stiffness 

matrix. On the other hand, in the explicit 

method of formulation, this can be included 

efficiently during the process of determining 

the internal force vector without a great deal 

of additional computational effort.

In the following, the calculations of internal 

force vectors for the plate element are briefly 

presented.

In accordance with Eq. (9), matrices [B] 

may be decomposed into 

[B ] = [ Bo
p] + [ Bo

b] + [Bi] + [BL] (11)

where [Bop] and [Bob] are the linear in-plane 

and bending related strain-displacement matrices, 

respectively. [Bi] and [BL] are the matrices 

that take into account the linear contribution 

of the initial deflection to the in-plane strain, 

and the change in geometry due to large 

deflection, respectively.

In the computer implementation, to avoid 

extensive zero multiplications, the element 

stress vector is separately calculated as

{σ } =  {σ po } + {σ
b
o } + {σ

L}         (12)
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where {σop} is the stress vector due to 

in-plane motion of the plate, {σob} the stress 

vector due to bending of the plate, and {σL} 

the stress vector due to the initial deflections 

and the change in the geometry.

Using the element matrix [B] in Eq. (11) 

and the constitutive relationship for plates, 

each stress vector in Eq. (12) is respectively 

given by

{σ po } =  [Dp ][B
p
o ] {d i }                 (13a)

{σ bo } =  [Dp ][B
b
o ] {do }                 (13b)

{σL} = [Dp ]( [Bi] + 12 [BL]) {do }(13c)

where [Dp] is the matrix containing the 

linear-elastic constitutive relationship for an 

elastic isotropic plate. {di} and {do} are the in-plane 

and out-of-plane nodal displacement vectors within 

the element, respectively, and given by

{d i} =  { uo  v o  θ z }
T          (14a)

and

{do} =  { wo θ x θ y }
T          (14b)

In the explicit method of formulation, the 

element internal force vector {fin} can be 

calculated by using Eq. (3). The element 

internal force vector due to the in-plane 

displacement, {fini}, is calculated as

{f  iin } =
⌠
⌡V
[Bpo]

T 
( {σ

p
o } + {σ

L}) dV   (15a)

The element internal force vector due to the 

out-of-plane displacement, {fino}, is calculated as

{f  oin } =

⌠
⌡V (

[B
b
o ]
T
{σ
b
o }+[BL]

T
{σ

L
}+[BL]

T
{σ
p
o } )dV

                                          (15b)

The integrations in Eqs. (15a) and (15b) must 

be integrated numerically. In the computer 

implementation, the Gaussian quadrature is 

employed for the numerical integration.

The internal force vector of the element, 

{fin}, is the sum of the two internal force 

vectors determined above, i.e.,

{f in} = {f
 i
in } + {f

 o
in }          (16)

3.4 Element Mass Vector

A lumped mass matrix with the central 

difference method is a good combination in 

explicit methods (Cook et al. 1989). If the mass 

density and thickness within the element are 

constant, numerical integration with the 2x2 

Gaussian quadrature rule is known to be 

sufficient. Since the lumped mass matrix is in 

the form of a diagonal matrix, all terms are 

merely vectors. In the computer implementation, 

the mass vector at the node i is calculated in 

the natural coordinates as

{mi} = ρt ⌠⌡ξ
⌠
⌡η
[Ni ]T [Ni ]∣J∣dξdη   (17)

where ρ is the mass density, t the 

thickness of element, and [Ni] the shape 

functions at node i. J is the determinant of 

the Jacobian matrix, which represents the 

area of the element, and ξ and η are the 

natural coordinates. 
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4. ILLUSTRATIVE NUMERICAL EXAMPLES

Using the reformulated plate element and central 

difference method, the solution algorithm is 

coded as the computer program. The validity of 

the computer program in predicting postbuckling 

response of thin plates under impact loadings is 

demonstrated through the example problems.

For the example problems considered herein, 

a simply supported thin plate subjected to 

in-plane compressive impact loads is analyzed. 

For a square plate geometry, the length of plate 

a=400 in. (10,160 mm) and the thickness of 

the plate t=1.5 in. (38.1 mm) are assumed 

(Fig. 2). The uniformly distributed compressive 

loads are applied in the x direction of the 

plate. In the analysis, one quarter of the 

plate is idealized using a 16 finite element 

mesh. For the material properties of the 

plate, an elastic modulus of 3.0x10
7 psi 

(2.07x105 MPa) and Poisson's ratio of 0.333 

are assumed. Initial deflection of the plate is 

assumed to represent the locally buckled shape 

of the plate. For the simple support boundary 

condition, the initially deflected shape of the 

plate is represented by a double sinusoidal 

function for one quarter of the plate shown in 

Fig. 2 as

wi (x,y) = c cos
πx
a
cos

πy
a
          (18)

where c is the maximum magnitude of initial 

imperfection of the plate. In the analysis, the 

maximum magnitude of initial imperfection is 

taken as c=0.1t. Due to the characteristics of 

the explicit method, the inertia force is 

required. For this example problem, the mass 

density of steel, ρ=7.35x10
-4 lb-sec2/in4, is 

assumed. The shapes of load considered for the 

examples are the ramp and one half sine 

phase loadings (Fig. 3). 

Fig. 3 Impulsive loadings: (a) ramp phase; (b) one half sine wave phase

Td
t

P P

t
Td

(a) (b)

Fig. 2 Geometry and loading conditions of square plate

qx

y

a q

a
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In the previous investigation for the 

dynamic instability problem (Kim 1996), the 

ramp, triangular, and one half sine shaped of 

impulsive loadings are considered. Since the 

shape of one half sine wave load is identified as 

a severe loading case, this shape is considered 

for the dynamic instability analysis. On the 

other hand, the ramp phase loading is utilized 

to induce the static behavior.

Gaussian numerical integration rule of 2x2 

is used for the calculations of element mass 

and internal force vectors.

4.1 Plate under Pseudo-static Loading

Since the explicit method requires very 

small time step for numerical integration, this 

method is inefficient for static analysis. 

However, for the purpose of comparison with 

the available analytical solutions, the static 

solutions are approximated using the pseudo-static 

loading. The uniform in-plane compressive loads 

of q/t=2247 psi (15.5 MPa) are applied at 

the middle surface of the plate in the x 

direction, as shown in Fig. 2. The load is 

increased using the predetermined loading 

rate of 7.5x10
4 lb/sec. The time step used in 

the calculations is t=2.0x10-4 sec.

The applied load versus the maximum 

out-of-plane deflection of the plate is plotted 

in Fig. 4. In the figure, the obtained solutions 

are compared with the solutions obtained by 

the implicit method (Kim 1997) as well as 

analytical solutions by Williams and Walker 

(1977).

The solutions by the explicit method are 

smaller than those of both analytical and 

implicit methods until the load reaches 

q/t=2000 psi (13.8 MPa). This may be due to 

the fact that the explicit method requires 

more times than the implicit method to reach 

the equilibrium because the explicit method 

does not perform iteration during the solution 

process. However, in the postbuckling range, 

the difference between three sets of solutions 

is negligible.

4.2 Plates under Impulsive Loading

The influence of impulsive loading on the 

dynamic postbuckling response of plate is 

briefly investigated. As shown in Fig. 3b, a 

one half sine shape of impulsive loading 

having various load durations is considered.

In the analysis, the magnitude of the impact 

load is unchanged, but durations of the load 

are changed to obtain the deflection versus 

time curves (histograms) for various load 

durations. The impact load has the maximum 

magnitude of q/t=2247 psi (15.5 MPa) at 

half the load. The duration of each load is 

normalized to the first period of free vibration 

of the unloaded plate. For this reason, the 

ratio of Td/Tn (the ratio between the period of 

the applied load and that of the first free 

vibration, Tn) is introduced. 

Fig. 4 Comparison of solutions using the explicit method, 

implicit method, and analytical method
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The natural frequency of the unloaded plate is 

ωn=14.01 rad/sec. Hence, the first duration 

of free vibration of the plate is Tn=0.4482 

sec. 

4.2.1 In-plane response of plate

In the first example, in-plane vibration of 

the plate due to impact loading is analyzed. 

The maximum in-plane deflection at the plate 

edge under static loading is 0.0239 in. (0.607 

mm).

Fig. 5 shows the in-plane response curves 

for Td/Tn=0.5, 1.0, and 1.25, which correspond 

to load durations of 0.224 sec, 0.448 sec and 

0.560 sec, respectively. The figure shows that 

the influence of load durations on the plate 

response is apparent. For the load duration of 

Td/Tn=1.25, the maximum in-plane response 

of the plate is 1.4 times larger than that of 

static loading. However, the influence of load 

durations on in-plane response of the plate is 

not severe.

4.2.2 Out-of-plane response of plate

In the second example, out-of-plane vibration 

of the plate induced by the in-plane impact 

loading is investigated. The shape of the load 

and the duration of impact loading are the 

same as those in the previous example.

Fig. 6 shows the maximum out-of-plane 

deflection of the plate versus time curves for 

the load durations of Td/Tn=0.5, 1.0, and 

1.25. For short load durations (Td/Tn<0.5), 

the dynamic effect is less than the static. 

However, as the load duration increases, the 

dynamic effect becomes pronounced.

Fig. 7 shows the response of plates for 

which the values of Td/Tn are higher than 

unity. For relatively higher values of load 

duration (Td/Tn > 1.25), the amplitude of 

vibrations yields the deflections, which are 1.5 

times larger than those of static loading. For a 

relatively long load duration (Td/Tn=1.25), 

the maximum out-of-plane amplitude is not 

further increased but the frequency of 

response is changed. 

It is apparent that the dynamic postbuckling 

response of the plate is greatly influenced by 

the load duration. The results indicate that 

the value of Td/Tn=1.25 is assumed to be the 

critical value of dynamic instability for the 

plate under consideration.

Fig. 5  Influence of load durations on plate response 
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Fig. 6 Influence of load durations on postbuckling response 

of plate (maximum out-of-plane deflection versus 

time curves for Td/Tn=0.5, 1.0, and 1.25)

-3

-2

-1

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (second)

O
u
t-

o
f-

p
la

n
e
 d

e
fl
e
c
ti
o
n
 (

in
c
h
) 

  
  

Td/Tn=0.5

Td/Tn=1.0

Td/Tn=1.25



148       한국구조물진단학회 제6권 제3호(2002. 7)

5. CONCLUSIONS

In this study, dynamic postbuckling behavior 

of thin plates under impulsive loadings is 

analyzed by using the explicit method. Based 

on the results of analysis for the selected 

example poblems, several conclusions can be drawn 

and are summarized in the followings.

1) The numerical results show that, for the 

plate postbuckling problems under short 

duration of transient loading, the explicit 

method is more efficient than the implicit 

method. 

2) The results of example problems indicate 

that the dynamic postbuckling response of 

plates is greatly influenced by the load 

duration. For a short duration of impact 

load, the dynamic effect is less than the 

static effect. However, the influence of 

impulsive loading on postbuckling response 

is more pronounced as the load duration is 

increased.

3) For certain relationships between the load 

duration and the natural frequency of the 

plate, out-of-plane vibration occur with 

rapidly increasing amplitudes. Once the 

load duration reaches its critical value of 

dynamic instability, the maximum dynamic 

response of the plate is about 50% larger 

than the corresponding static value.

4) The results of example problems have shown 

that dynamic postbuckling response of thin 

plates is quite different from the corresponding 

static response. It is therefore concluded that, 

where appropriate, the dynamic nature of 

loads must be considered in the structural 

problems to provide adequate safety against 

dynamic structural instability.
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