대기오염으로 인한 건강효과의 경제적 비용*
— 금성 호흡기 질환 외래환자를 중심으로 —

신 영철**

I. 서 론
II. 이환과 경제적 비용
III. 이환수수의 추정모형
IV. 실증분석
V. 결 론

I. 서 론

대기오염은 직접적으로 호흡기와 관련된 질환을 증가시키는 등 다양한 질환율(morbidity)을 증가시키고 조기사망률(premature mortality)에도 영향을 주는 것으로 알려져 있다. 또한 시정거리(visibility)를 감소시켜 주변환경으로부터의

* 이 연구는 2001학년도 대전대학교 연구권 지원으로 이루어졌다. 유익한 논평을 해주신 익명의 심사위원님들에게 감사드립니다.
** 대전대학교 경제학과.
신 영철

쾌적성을 감소시키고, 자연생태환경을 파괴하거나 농업생산성을 감소시키고 물리적인 해손등으로 막대한 경제적 비용을 발생시키고 있다.

미국 환경부(environmental protection agency: EPA)의 연구(1997, 1999)에 따르면, 대기오염으로 인한 부정적인 효과들 중 대기오염에 의한 질환율과 사망률의 변화로 나타나는 건강효과의 비용이 전체비용의 80% 이상을 차지하고 있다. 이 건강효과 중에서 사망률과 관련된 경제적 비용이 압도적인 부분을 차지하고는 있지만, 질환율의 변화에 따른 비용도 상당한 비중을 차지하고 있다.

그러므로 대기오염 증가에 따른 경제적 비용 또는 대기오염의 감소로 얻게 되는 경제적 폐익(benefit)을 제대로 추정하려면, 대기오염의 건강효과에 대한 연구와 더불어 건강효과들의 경제적 비용에 대한 연구가 동시에 이루어져야 한다.

대기오염은 일반적으로 다음과 같은 다섯 가지 경로를 통해 인간의 건강에 영향을 주고 있으며, 그 결과로서 사람들의 후생(welfare)을 감소시키게 된다. 첫째는 대기오염으로 유발된 질환을 치료하는데 들어가는 의료비용, 여기에는 치료를 받기 위해 소요된 시간의 기회비용도 포함된다. 둘째는 임금 상실분1) 센세는 대기오염으로 유발되는 질환을 방지하려는 방어적 혹은 회피적 비용 지출, 넷째는 중상으로 인한 불쾌감등의 비용(disutility)과 여가활동 기회의 상실, 마지막으로 대체수명 혹은 조기 사망 위험의 변화이다(Freeman, 1993). 여기서 다섯 번째 경로가 사망률과 관련되고 나머지 네 가지 경로는 질환율과 연관된다.

대기오염의 건강효과를 측정하는 방법들은 농도-반응 함수(concentration-response function) 측정과 그와 관련된 가치 측정을 두 과정으로 나누어서 하는가, 아니면 한변에 하는가에 따라 구분할 수 있다. 의료비용법(cost of illness method: COI)과 조건부가치측정법(contingent valuation method: CVM)은 농도-반응 함수 추정과 그와 관련된 가치 측정을 두 과정으로 나누어 진행하고, 회

1) 질환에 의한 경제적 비용에 임금상승분을 포함시키는 것은 질환에 따른 생산성 하락의 대리 변수로 간주하기 때문이다. 그러나 질환에 의한 생산성 하락의 정도를 임금상승분이 제대로 반영하지 못한다면 다른 정량화 방법을 검토해 볼 필요가 있다.
대기오염으로 인한 건강효과의 경제적 비용

피행위집근법(avoiding behavior method: ABM)은 한번의 과정으로 논의한다.


한편 조건부가치측정법(CVM)은 설문을 이용하여 특정 질환의 감소에 대한 조건부시장(contingent market)을 구축하고, 그에 대한 응답자의 지불의사를 파악하기 위한 질문을 직접하여 질환율의 변화에 대한 경제적 가치를 추정하는 방법이다. 이 방법은 질환으로 발생하는 다양한 비용뿐만 아니라 질환의 고비용이나 불쾌감까지 포함해서 고려할 수 있다는 점에서, 이론적으로 보면 대기오염에 따른 건강효과의 후생 변화를 가장 근접하게 측정할 수 있는 방법이라고 볼 수 있다. 즉, 앞서 언급한 대기오염이 질환율과 관련된 네 가지 경로에서 발생하는 비용을 모두 포함해서 측정할 수 있다는 것이다.


한편 회피행위정근법(ABM)은 오염물질에 대한 노출을 회피하거나 오염물질이 건강에 미치는 효과를 완화하기 위하여 지출하는 방사적 지출로부터 개인의

- 661 -

본 연구에서는 국민의 건강에 관한 종합적인 가구단위 통계조사인 '1998년 국민건강·영양조사'를 주요 자료로 이용하여, 대기오염이 급성 호흡기 질환 발생에 어떠한 영향을 주며 그로 인한 의료비용 및 기타 비용을 포함한 총비용은 어느 정도인지를 의료비용법에 기초해서 측정해 보고자 한다. 이를 위해 먼저 급성 호흡기 이환(罹患)을 여부를 대기오염수준 및 개인의 사회경제적 특성을 설명변수로 한 급성 호흡기 이환 함수를 추정하고자 한다. 이 함수는 대기오염수준과 급성 호흡기 질환 발생의 관계를 보여 주기 때문에 일종의 농도-반응 함수(concentration-response function)라고 볼 수 있다. 그런데 기존의 대부분 역학적 연구에서는 농도-반응 함수의 추정에서 질환 발생의 설명변수로 환경오염물질의 농도만을 고려할 뿐, 사람들의 사회경제적 특성을 고려하지 않고 분석하는 문제점이 있다. 사회경제적 특성 변수들을 포함하지 않은 농도-반응 함수는 중첩변수에 중요한 영향을 주는 설명변수들을 배제하고 분석하는 것이기 때문에, 고려하지 못한 변수들(omitted variables)에 의한 편의(bias)가 발생한다. 결과적으로 농도-반응 함수에서 급성 호흡기 질환 발생에 대한 영향을 보여주는 대기오염수준의 계수값에 편의가 있기 때문이다. 만약 그러한 추정결과를 그대로 이용하면, 대기오염수준의 변화에 따른 급성 호흡기 질환 발생의 정도를 왜곡하기에 이르렀다.

2) 이 조사는 보건복지부의 국민영양조사에 한국보건사회연구원의 국민건강 및 보건의식조사조사가 통합되고 건강검진조사가 새로 추가된 조사로 1998년에 조사되었다. 자세한 내용은 '98 국민건강·영양조사 종합보고서' (1999)를 참조하십시오.
3) 이환(罹患)은 질환의 발생, 즉 질환에 걸리는 것을 의미한다. 한편 질환(疾病) 또는 질환(疫患)이란 건강하지 않은 상태를 의미한다.
대기오염으로 인한 건강효과의 경제적 비용

는 결과를 가져오게 된다.

본 연구에서는 「1998년 국민건강·영양조사」 자료를 이용하기 때문에 질환 발생에 영향을 줘다고 생각되는 개인의 사회경제적 특성 변수들인 교육년수, 가족수, 1인당 소득, 결혼여부 등을 포함한 농도·반응 함수를 추정한다. 그리고 의료비용범위에서 결과에 중요한 영향을 주는 개인별 시간의 기회비용을 「1998년
입금구조 기본통계조사」 자료를 이용하여 추정한 임금방정식으로부터 도출하
고자 한다. 이렇게 추정된 개인별 시간 기회비용은 의료기관을 방문하기 위해
소요한 교통시간 및 치료를 위한 대기시간 등을 환차적 비용으로 환산할 수 있
도록 해 준다.

본고의 구성은 다음과 같다. 먼저 제Ⅰ절에서는 경제학적 관점에서 대기오염
에 의한 건강효과를 파악하기 위한 이론적 기초인 이환함수에 대해 설명하고,
질환과 관련된 비용과 질환을 회피하기 위한 지불의의사금액의 관계를 정리·소
개한다. 제Ⅱ절에서는 급성 호흡기 이환함수의 추정 방법을 소개한다. 제Ⅲ절에
서는 실증분석으로 급성 호흡기 이환함수와 더불어 유직자의 시간당 임금함수
을 추정하고 의미를 해석한다. 또 그 결과를 이용하여 대기오염수준의 변화가
급성 호흡기 질환의 발생을 어느 정도 증가시키는지와 그에 따른 경제적 비용
을 예시한다. 마지막 제Ⅳ절에서는 분석 결과를 요약하고 앞으로의 연구방향
에 대해 언급한다.

Ⅱ. 이환과 경제적 비용

건강은 다양한 측면을 가지고 있다. 대기오염수준의 변화는 경미한 증상·
질환에서부터 치명적 질환에 이르는 다양한 형태로 건강에 영향을 미친다. 그러

4) 이 자료는 근로자의 임금·근로시간 등 제근로조건에 관한 사항을 직종 및 산업별로 조사하고
약함으로써 제반 경제사회적 현상의 임금체계 등의 개선을 위한 기초자료를 제공할 목적으로
매년 노동부에 의해 조사가 이루어진다.
신 영철

므로 대기오염의 전량에 대한 영향은 일반적으로 사망률에 대한 효과(mortality effects)와 질환율에 대한 효과(morbidity effects)로 크게 두 분야로 나누어 분석되고 있다.

미국 보건당국은 질환을 “신체적 또는 정신적인 복리로부터의 이탈이면서 영향을 받고 있는 개인이 지각하는 경우에 한한다”라고 정의하고 있다(Cropper and Freeman, 1991). 경제학적 관점에서 볼 때, 질환에 의한 불리한 건강영향은 개인에게 그 변화가 인지될 뿐만 아니라 그 효과를 최적화하기 위해 개인이 일정한 금액을 지불할 의사가 있는 경우에 발생한다고 본다.

건강과 관련되지 않는 집계 재화(aggregate goods) \( (X) \)의 소비 또는 여가 \( (L) \)가 증가하면 일반적인 개인의 효용은 키친다. 반면에 개인이 생산하는 건강상태의 일종인 ‘이환(罹患) 정도’ \( S \)는 주어진 기간 동안에 특정 질환으로 보낸 시간과 더불어 질환의 심한 정도까지 반영한다고 가정한다. 그럴 경우 \( S \)가 증가하면 개인의 효용은 감소한다. 이 경우 대표적 개인의 효용함수는 다음과 같다.

\[
U = U(X, L, S; Z_u) \tag{1}
\]

여기서 \( Z_u \)는 소득, 여가 및 건강에 대한 개인의 신호 특성을 반영하는 벡터이다.

한편 대기오염수준 \( P \)는 개인의 효용에 직접적으로 영향을 주지 않고, 개인들의 ‘이환 정도’ \( S \)를 통해서만 간접적으로 효용에 영향을 준다고 본다. 대기오염수준과 ‘이환 정도’ \( S \)의 관계는 다음과 같은 농도-반응 함수(concentration-response function) 또는 농도-반응 함수(dose-response function)로 표현될 수 있다.

\[
S = S(P; Z_D) \tag{2}
\]

여기서 \( Z_D \)는 개인의 특성 벡터로서 대기오염에 대한 노출을 최적화하기 위한
대기오염으로 인한 건강효과의 경제적 비용

사전적 행동과 관련된 요소들 및 당시의 건강상태등을 포함하고 있다. 이 식 (2)로부터 다음 절에서 대기오염 수준 및 개인 특정 변수들의 함수로 급성호흡기 이환 함수 모형을 정의한다.

만약 대기오염에 대한 노출을 줄여서 질환을 회피하고자 하는 개인들의 회피행동(A)을 반영하면 농도-반응 함수는 다음과 같이 변화된다.

\[ S = S(P, A; Z_D) \]  \hspace{1cm} (3)

이 식에서 \( \partial S/\partial A < 0 \)이고, \( \partial S/\partial P > 0 \)이 성립한다.

이 경우 개인들은 효용을 극대화하기 위해 여가 (L)와 집계 재화 (X) 그리고 회피행동 (A)을 다음과 같은 제약에서 선택하게 된다.

\[ y + wT - L - W(S(P, A)) \]
\[ = X + P_M \cdot M(S(P, A)) + P_A \cdot A \]  \hspace{1cm} (4)

이 식은 개인들이 시간을 노동과 여가에 배분하고, 자신의 소득을 재화 소비와 의료 행위 (M) 및 회피행위 (A)를 위해 지출한다고 본다. 여기서 의료행위 에 대한 지출은 이환 정도 (S)와 회피행동 (A)에 따라 결정된다. 그리고 의료 행위 한 단위의 가격은 \( P_M \), 회피행동 한 단위의 가격은 \( P_A \)이고, 집계 재화의 가격은 1로 정규화한다. 이환 정도는 개인이 얻을 수 있는 시간을 감소시키기 때문에 예산제약식에 포함된다. 식 (4)에서 질환으로 인한 노동순실시간은 \( W(\cdot) \)으로 표시된다. 여기서 \( w \)는 시간당 임금률이다.

그런데 대기오염으로 인한 건강효과의 경제적 비용이란 대기오염으로 발생하 게 될 부정적 건강효과를 회피하기 위해 지불하고자 하는 금액(WTP)이라고 정의할 수 있다. 이 지불의사금액은 대기오염수준의 감소 때문에 일정한 금액을 지불하더라도 현재와 동일한 효용 수준을 유지시켜 주는 금액과 같다. 따라서
신 영철

부정적 건강효과를 회피할 수 있도록 해 주는 대기오염수준 감소에 대한 개인의 지불의사금액은 다음의 식을 만족한다.

\[ V^*(y - WTP, w, p_m, p_A, P_1) = V^*(y, w, p_m, p_A, P_0) \]  

여기서 \( V^* \)는 간접효용함수(indirect utility function)이고, \( P_0 \)는 최초의 오염수준이고, \( P_1 \)은 변화된 후의 오염수준이다. 이 때 \( P_0 > P_1 \)이며 대기오염상태가 개선되어 대기질이 좋아진 것을 의미한다. 이 때의 지불의사금액(WTP)은 양의 값을 가질 것이다.


\[ WTP = w \frac{dW}{dP} + P_m \frac{dM}{dP} + P_A \frac{dA^*}{dP} - \frac{U_s}{\lambda} \cdot \frac{dS}{dP} \]

여기서 \( A^* \)는 회피행동 \( A \)에 대한 수요함수이고, \( \frac{dA^*}{dP} \)는 대기오염수준의 변화에 대한 최적 회피행동의 조정수준(optimal adjustment of A)을 의미한다. 이 식에 따르면 사람들의 대기오염수준 감소에 대한 지불의사금액(WTP)은 소득의 상실분 \( w \frac{dW}{dP} \)과 의료비용 \( P_m \frac{dM}{dP} \)과 함께 회피행동비용 \( P_A \frac{dA^*}{dP} \)도 포함되어 있으며 아니라 질환의 비효용(즉, 불편함)도 소득의 한계효용으로 나누어 환담액으로 환산 \( -\frac{U_s}{\lambda} \cdot \frac{dS}{dP} \)되어 포함되어 있음을 알 수 있다(Alberni and Krupnicky, 2000). 그러므로 의료비용과/or 회피행위점근법으로는 대기오염에 의한 건강효과를 회피하기 위한 지불의사금액을 과소 평가하게 됨을 알 수 있다(Harrington and Portney, 1987; Courant and Porter, 1981). 왜냐하면 의료비용과/or 회피행위점근법은 근본적으로 질환에 의한 불편함의 가치를 포함시키지 못하기 때문이다. 한편 식 (5)는 다음과 같이 정리될 수 있다.
대기오염으로 인한 질병효과의 경제적 비용

\[ WTP = \frac{dS}{dP} \cdot \left[ w \frac{dW}{dS} + \rho_M \frac{dM}{dS} + \rho_A \frac{dA^*}{dS} - \frac{US}{\lambda} \right] \]

\[ = \left\{ \frac{dS}{dP} \cdot \left( w \frac{dW}{dS} \right) \right\} + \left\{ \frac{dS}{dP} \cdot \left( \rho_M \frac{dM}{dS} \right) \right\} \]

\[ + \left\{ \frac{dS}{dP} \cdot \left( \rho_A \frac{dA^*}{dS} \right) \right\} + \left\{ \frac{dS}{dP} \cdot \left( - \frac{US}{\lambda} \right) \right\} \]  \hspace{1cm} (7) \]


그러나 이러한 방식으로 추정한 질환의 경제적 비용은 식 (7)에서 보면 알 수 있듯이 급성 호흡기 질환에 따른 총경제적 비용의 하한값이라고 볼 수 있다.
III. 이환함수의 추정모형

앞 절에서 정의한 개인의 ‘이환 정도’ $S$는 급성 호흡기 질환자의 질환 발생, 즉 이환 여부와 관련된다. 식 (2)에서 정의된 이환 정도를 나타내는 $S$는 연속 적인 값으로 나타난다고 볼 수 있다. 그러나 이 경우 개인들은 자신의 이환의 정도 $(S_i)$가 특정한 값 $(\mu)$을 넘어서면 이환이 발생한다고 알게 되고 $(I_i = 1)$, 이환의 정도가 특정한 값 $(\mu)$에 이르지 않는다면 이환이 발생하지 않는다 $(I_i = 0)$. 즉, 이환의 정도 $(S_i)$와 이환 여부 $(I_i)$는 다음과 같은 관계가 성립한다고 볼 수 있다.

$$
I_i = \begin{cases} 
1 & \text{if } S_i \geq \mu \\
0 & \text{if } S_i < \mu 
\end{cases} \quad (8)
$$

여기서 $i$는 각 개인을 의미한다.

개인의 이환 정도 함수는 다음과 같이 표현될 수 있다.

$$
S = x_i \beta + \varepsilon_i, \quad \varepsilon_i \sim i.i.d. \ N(\mu, \sigma^2) \quad (9)
$$

이 때 $x_i$는 설명변수의 벡터, $\beta$는 미지의 모수벡터, $\varepsilon_i$는 오차항으로 정규 분포에 따른다고 가정한다. 그리고 각 개인은 특정한 이환 정도 $(\mu)$를 기점으로 하여 급성 호흡기 질환이 발생한다고 볼 수 있다. 이 경우 각 개인에게 급성 호흡기 질환이 발생할 확률은 다음과 같이 정의될 수 있다.

$$
P_r(I_i = 1 \mid x_i) = P_r(S_i \geq \mu) = P_r(x_i \beta + \varepsilon_i \geq \mu) \quad (10)
$$
대기오염으로 인한 건강효과의 경제적 비용

\[ P_r(\varepsilon_i \geq \mu - x_i \beta) \]

\[ = P_r(z_i \geq \frac{(\mu - x_i \beta)}{\sigma}) \]

어기서 \( z_i \)는 가정된 정규분포로부터 나오는 표준정규확률변수이다. 따라서 각 개인에게 급성 호흡기 질환이 발생할 확률은 다음과 같다.

\[ P_r(I_i = 1 \mid x_i) = 1 - \Phi\left(\frac{(\mu - x_i \beta)}{\sigma}\right) = 1 - \Phi(z_i) \quad (11) \]

여기서 \( \Phi(z_i) \)는 표준정규누적분포함수이다. 그리고 각 개인이 급성호흡기 질환이 발생하는 경우와 마찬가지로 발생하지 않을 확률은 다음과 같다.

\[ P_r(I_i = 0 \mid x_i) = \Phi\left(\frac{(\mu - x_i \beta)}{\sigma}\right) = \Phi(z_i) \quad (12) \]


\( N \)명의 응답자 중에서 \( N_1 \)명의 사람들은 급성 호흡기 질환이 발생하고 나머지 \( N_2 (= N - N_1) \)명의 사람들은 급성 호흡기 질환이 발생하지 않는다고 하면, 이 때 로그우도함수(log-likelihood)는 다음과 같다.

\[ \log L = \sum_{i=1}^{N} \left[ I_i \ast \log[1 - \Phi(z_i)] + (1 - I_i) \log[\Phi(z_i)] \right] \]

\[ = \sum_{i=1}^{N_1} \log[1 - \Phi(z_i)] + \sum_{i=1}^{N_2} \log[\Phi(z_i)] \quad (13) \]
신영철

이 로그우도함수에 대해 비선형 최적화 기법을 적용하면, 계수 벡터 $\beta$에 대해 이 함수값을 극대화하도록 할 수 있다.

IV. 실증분석

1. 자료

본 연구에서 실증분석을 위해 이용한 자료는 1998년에 보건복지부의 국민영양조사에 한국보건사회연구원의 국민건강 및 보건의식행태조사를 통합하고 건강검진조사를 추가한 '1998년 국민건강·영양조사' 자료를 이용하였다. 본 연구에서 이용한 자료는 전국에서 표본으로 추출된 1만 2,189가구의 모든 가구원(비혈연가구원 제외) 3만 9,060명에 대해 실시된 건강면접조사 자료를 이용하였다. 건강면접조사는 조사원에 의한 가구방문 면접조사로 1998년 11월 1일에서 12월 30일에 걸쳐 이루어졌다. 이 건강면접조사 자료에서는 급·만성 질환별 이환실태 유병률, 사고 및 장애발생 등의 이환실태와 2주간 외래의료비용 및 연간 임원의료비용 등의 의료비용에 대한 자료를 포함하고 있다(남성자 외, 1999a).

본 연구에서는 급성 호흡기 질환으로 약국을 포함한 의료기관5)에서 외래로 치료를 받는 경우만을 고려하였다. 왜냐하면 만성 질환의 경우 그 발병시기가 정확하게 파악되지 않아서 조사대상자 주거지의 대기오염상태와 만성질환의 관계를 설정하기 어렵다고 판단되었기 때문이다. 그리고 급성 호흡기 질환으로 입원하는 경우도 제외시켰는데, 조사에서는 입원시기와 퇴원시기를 기록하도록 되어 있었지만, 최종 코딩된 자료에는 퇴원기간만이 나와 있어서 역시 조사대상자 주거지 대기오염상태와 질환의 관련성을 상정하기 어렵다고 생각되었기 때문이다.

5) 여기에 포함되는 의료기관은 병의원, 한방병원, 약국, 보건(치)소, 보건진료소이다.
대기오염으로 인한 건강효과의 경제적 비용

〈표 1〉 분석에 이용된 변수의 정의와 기초 통계량

<table>
<thead>
<tr>
<th>변수</th>
<th>변수설명</th>
<th>평균</th>
<th>표준편차</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRESP</td>
<td>급성 호흡기 질환 발생 = 1 급성 호흡기 질환 미발생 = 0</td>
<td>0.16</td>
<td>0.40</td>
</tr>
<tr>
<td>NO2</td>
<td>이산화질소 농도(ppm)</td>
<td>0.027</td>
<td>0.007</td>
</tr>
<tr>
<td>TSP</td>
<td>총부유먼지(100μg/m³)</td>
<td>0.682</td>
<td>0.002</td>
</tr>
<tr>
<td>SEX</td>
<td>남성 = 1, 여성 = 0</td>
<td>0.49</td>
<td>0.50</td>
</tr>
<tr>
<td>AGE</td>
<td>나이</td>
<td>33.64</td>
<td>20.73</td>
</tr>
<tr>
<td>CHILD</td>
<td>나이 ≤ 14</td>
<td>0.22</td>
<td>0.41</td>
</tr>
<tr>
<td>MAR</td>
<td>기혼 = 1, 미혼 = 0</td>
<td>0.58</td>
<td>0.49</td>
</tr>
<tr>
<td>EDU</td>
<td>교육기간(년)</td>
<td>8.85</td>
<td>5.19</td>
</tr>
<tr>
<td>FSIZE</td>
<td>가족수(명)</td>
<td>3.82</td>
<td>1.36</td>
</tr>
<tr>
<td>PINC</td>
<td>1인당 소득(100만 원)</td>
<td>0.38</td>
<td>0.003</td>
</tr>
</tbody>
</table>

전체조사대상 인구의 55%가 조사당일로부터 2주 전의 기간 동안 한 가지 이상의 급성 질환을 지지고 있었다. 구체적으로 보면, 10%의 인구는 급성질환과 만성질환을 동시에 갖고 있었고, 만성질환만 갖고 있는 사람은 31%, 급성질환만 갖고 있는 사람은 14%이다. 다시 말하면, 지난 2주간 급성질환을 앓은 사람은 24%이다(남성자 외, 1999b). 모든 급성질환 중 급성 호흡기계 질환이 76.0%를 차지하는데, 그 중에서 감기의 비중이 75.3%로 압도적 비중을 차지하고 있다. 이는 조사기간이 겨울이어서 겨울이었다는 사실과 무관하지 않다.

조사대상자들이 사는 거주지의 대기오염수준은 1999년 「환경통계연감」의 주요도시별 대기오염도 월별 자료를 이용하였다. 설문 조사기간이 11월과 12월 두 달에 걸쳐 이루어졌고 조사 당일로부터 2주 전 사이에 발생한 질환에 대한 조사가 이루어졌기 때문에, 대기오염수준은 조사대상자의 주거지의 10월에서 12월까지 3개월 동안의 평균값을 이용하였다. 만일 주거지의 대기오염수준을 구할 수 없는 경우에는 대기오염수준을 알 수 있는 가장 가까운 지역의 정보를 활용하였다.
본 연구에서 급성 호흡기 이환 함수의 추정에 이용한 설명변수들의 설명과 기초 통계자료는 〈표 1〉에 요약되어 있다.

2. 급성 호흡기 이환 함수 추정

급성 호흡기 이환 함수를 구체적으로 다음과 같이 나타낼 수 있다.

\[
DRESP = f(NO_2, TSP, SEX, AGE, CHILD, MAR, EDU, FSIZE, PINC)
\]  (14)

이 식에서는 급성 호흡기 이환 여부는 주거지의 대기오염 상태(NO_2 및 TSP)와 개인의 급성 호흡기 질환에 영향을 줄 수 있는 개인의 사회경제적 특성인 성별(SEX), 나이(AGE), 14세 이하의 어린이인지 여부(CHILD), 결혼 여부(MAR), 교육기간(EDU), 가족의 수(FSIZE), 가구원 1인당 소득의 함수(PINC)에 영향을 받는다고 생각할 수 있다. 앞서 서론에서도 언급한 바와 같이, 이 함수는 대기오염수준과 호흡기 질환 발생 사이의 관련성을 분석하는 농도-반응 함수와는 다르다. 농도-반응 함수에서 건강에 영향을 주는 사회경제적 변수들의 영향을 고려하지 못하면, 고려하지 못한 변수(omitted variable)의 오류로 인하여 대기오염물질이 건강에 미치는 효과를 일반적으로 왜곡시키게 된다. 본 연구에서는 건강에 영향을 미치는 대기오염수준뿐만 아니라 개인의 사회경제적 변수도 동시에 고려하고 있기 때문에, 그러한 문제점을 회피할 수 있다. 〈표 2〉에는 프로빗 모형으로 나타나는 급성 호흡기 이환 함수 세 가지 경우의 추정결과가 정리되어 있다. 여기서 〈모형 1〉은 이산화질소(NO_2)와 충부유

---

6) 여기에서 포함된 이산화질소(NO_2)와 충부유분인(TSP)은 급성 호흡기 이환에 통계적으로 유의한 영향을 주기 때문에 포함하였다. 그런데 이산화질소(NO_2)와 충부유분인(TSP)이 각각 포함될 경우 각각 유의한 것으로 나타나지만 둘다 포함시킬 경우 이산화질소(NO_2)만이 유의한 것으로 나타나는 것은 대기오염물질들의 상관성이 높은 것에 기인한 것이라고 생각된다. 계량모형의 선택과 관련해서는 Maddala (1992) pp. 490~500을 참조하시오.
대기오염으로 인한 건강효과의 경제적 비용

표 2 급성 호흡기 질환 함수의 추정 결과

<table>
<thead>
<tr>
<th>변수</th>
<th>모형 1 계수값</th>
<th>모형 2 계수값</th>
<th>모형 3 계수값</th>
<th>t값 1</th>
<th>t값 1</th>
<th>t값 1</th>
<th>총계효과</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONST</td>
<td>-0.413</td>
<td>-0.388</td>
<td>-0.412</td>
<td>-6.84***</td>
<td>-6.56***</td>
<td>-7.10***</td>
<td>-0.097</td>
</tr>
<tr>
<td>NO2</td>
<td>3.000</td>
<td>2.09**</td>
<td>3.035</td>
<td>0.04</td>
<td>0.077</td>
<td>1.65*</td>
<td>0.716</td>
</tr>
<tr>
<td>TSP</td>
<td>0.002</td>
<td>0.04</td>
<td>0.053</td>
<td>-3.36***</td>
<td>-3.39***</td>
<td>-3.36***</td>
<td>-0.013</td>
</tr>
<tr>
<td>SEX</td>
<td>-0.012</td>
<td>-0.012</td>
<td>-0.012</td>
<td>-14.41***</td>
<td>-14.42***</td>
<td>-14.42***</td>
<td>-0.003</td>
</tr>
<tr>
<td>AGE</td>
<td>0.187</td>
<td>0.187</td>
<td>0.190</td>
<td>5.18***</td>
<td>5.19***</td>
<td>5.18***</td>
<td>0.044</td>
</tr>
<tr>
<td>CHILD</td>
<td>0.190</td>
<td>0.189</td>
<td>0.190</td>
<td>6.76***</td>
<td>6.73***</td>
<td>6.77***</td>
<td>0.045</td>
</tr>
<tr>
<td>MAR</td>
<td>-0.035</td>
<td>-0.035</td>
<td>-0.035</td>
<td>-15.93***</td>
<td>-15.87***</td>
<td>-15.94***</td>
<td>-0.008</td>
</tr>
<tr>
<td>EDU</td>
<td>-0.043</td>
<td>-0.043</td>
<td>-0.043</td>
<td>-6.82***</td>
<td>-6.76***</td>
<td>-6.82***</td>
<td>-0.010</td>
</tr>
<tr>
<td>FSIZE</td>
<td>0.127</td>
<td>0.130</td>
<td>0.127</td>
<td>3.52***</td>
<td>3.61***</td>
<td>3.52***</td>
<td>0.030</td>
</tr>
<tr>
<td>PINC</td>
<td>-0.013</td>
<td>-0.013</td>
<td>-0.013</td>
<td>-1.28***</td>
<td>-1.32</td>
<td>-1.29</td>
<td>-0.003</td>
</tr>
<tr>
<td>PINC^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>로그우도</td>
<td>-16486.00</td>
<td>-16488.19</td>
<td>-16486.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR 값</td>
<td>4.38</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주: 1) * *, **, ***는 각각 유의수준 10%, 5%, 1%에서 통계적으로 유의함을 나타냅니다.
2) LR 값 = 2(제약이 없는 모형의 로그우도 - 제약을 준 모형의 로그우도)로 계산된다. 여기서 제약이 없는 모형은 <모형 1>, <모형 2>는 이산화질소(NO2)의 계수가 0, <모형 3>은 총부유분진(TSP)의 계수가 0이라는 제약을 준 모형임.

분산(TSP)의 오염도를 둘다 포함시켰고, <모형 2>는 대기오염도 중 총부유분진(TSP)의 오염도, <모형 3>에서는 이산화질소(NO2)의 오염도만을 고려하였 다. 이는 <모형 2>에는 이산화질소(NO2)의 계수가 0이라는 제약을 준 모형이고, <모형 3>은 <모형 1>에 총부유분진(TSP)의 계수가 0이라는 제약을 준 모형임을 의미한다.

로그우도비 검정(LR test)을 위해 <모형 1>과 <모형 2>의 LR 값을 <표 2>의 주 2)에 있는 방식으로 구하면 4.38인데, 이는 유의수준 5% 기각 임계치
신 영철

3.84(= x^2_{0.05}(1))을 나머지기 때문에 이산화질소(NO_2)의 계수가 0이라는 귀무가설은 기각된다. 한편 <모형 1>과 <모형 3>의 LR값은 0이므로 유의수준 5% 기각 임계치를 넘지 않으므로 총부유분진(TSP)의 계수가 0이라는 귀무가설을 기각할 수 없다. 바꾸어 말하면 총부유분진(TSP)의 계수가 0이라고 보고 추정해도 문제가 없다는 것이다. 그러므로 본 연구에서는 <모형 3>을 중심으로 급성호흡기이환실험의 추정 결과에 대한 설명을 하고자 한다.

프로빗 모형에서의 추정된 계수값을 그대로 한계효과(marginal effect)로 해석할 수 없다. 프로빗 모형에서 설명변수의 변화로 인한 한계효과는 설명변수의 평균값 주위에서의 한계효과로 해석될 수 있을 뿐이다. 이 경우의 프로빗 모형의 한계효과는 다음과 같이 표현된다.7)

$$\frac{\partial \Phi(\beta \cdot x_i)}{\partial x_i} = \phi(\beta \cdot x_i) \beta$$

여기서 \(\Phi(\cdot)\)는 표준정규누적분포함수, \(\phi(\cdot)\)는 표준정규분포함수이다.

<모형 3>에 근거할 경우, 주거지의 이산화질소 평균 오염농도인 0.027ppm 수준에서 이산화질소(NO_2)의 농도가 예를 들어 1ppm의 1/100에 해당하는 0.01ppm 변화하면, 급성호흡기이환 발생이 기존 급성호흡기이환발생률 (baseline morbidity)보다 0.716%만큼 증가하게 된다는 것을 알 수 있다. 그러므로 이산화질소 0.01ppm 증가에 따른 상대적 위험도(relative risk)는 1.00716라는 것을 의미한다.

<표 2>의 이환이연구결과에 따르면 개인의 사회경제적인 변수들로 급성호흡기이환 발생에 유의한 영향을 주고 있음을 알 수 있다. 가구원 1인당 평균소득의 제곱의 변수를 제외한 모든 사회경제적 설명변수들의 계수가 1% 유의수준에서 유의하다. 그러므로 이환이연구를 추정할 때 개인의 사회경제적 설명변수들을 포함하지 않으면, 고려하지 않은 변수들(omitted variables)로 인한

---

편의가 발생하게 될을 알 수 있다.
남성은 여성보다 1.3% 급성 호흡기 질환 발생이 더 적다. 남성과 여성의 급성 호흡기 질환 발생에 큰 차이가 있는 것은 아니고, 여성이 남성에 비해 근소하게 급성 호흡기 질환에 더 쉽게 걸린다는 것을 의미한다.
또 연령이 한 살 증가하는 경우 급성 호흡기 질환 발생은 0.3%씩 감소한다. 이는 연령이 증가하면서 자신의 건강 관리 능력이 증가하기 때문이라고 생각된다. 그렇지만 14세 이하의 어린이들은 15세 이상의 사람들보다 급성 호흡기 질환 4.5%만큼 더 많이 걸린다. 이러한 결과는 어린이가 신체적으로 약할 뿐더러 건강 관리 능력도 낮다는 점을 감안한다면 당연하다고 생각된다.
한편 기존에는 미혼자에 비해 4.5%만큼 더 많이 급성 호흡기 질환이 걸린다. 일반적으로 기존에는 미혼자에 비해 높은 연령층이므로 급성 호흡기 질환에 걸리기 쉽다고 생각된다.
그리고 교육수준이 1년 증가함에 따라 급성 호흡기 질환 발생은 0.8%씩 감소한다. 이는 교육수준이 증가함에 따라 건강관리를 위한 정보를 더 많이 수집해서 이용하기 때문이거나 교육수준이 높아짐에 따라 이환상태를 최적화하기 위한 예방활동에 보다 철저하기 때문이라고 생각할 수도 있다.
가족의 수가 한 명 증가하면 급성 호흡기 질환 발생은 1.0% 감소한다. 가족 중 한 명이 질환에 걸릴 경우 다른 가족들도 보다 주의하기 때문에 근소하게나마 가족수의 증가는 급성 호흡기 질환 발생을 감소시키는 것이라 생각된다. 그리고 가족 구성원 1인당 소득 및 그 값에 근거해 얻는 변수들의 계수의 부호와 크기를 고려하면 가구원 1인당 소득이 10만 원 증가하면 급성 호흡기 질환 0.2% 더 발생하고, 1인당 소득이 약 500만 원에 이르 때까지 소득 증가에 따라 질환 발생도 증가하는 경향이 유지된다. 이러한 결과는 일반적인 예상과는 차이가 있다고 생각되는데, 소득 높은 도시지역에서의 급성 호흡기 질환이 소득 낮은 농어촌지역에서보다 더 많이 발생하는 현상을 반영하는 것이라 생각된다.
3. 시간의 기회비용 추정

급성 호흡기 질환으로 의료기관을 방문하여 치료를 받는 경우, 직접 지불하게 되는 의료비용 외에도 의료기관에 가기 위해 교통시간이 소요되고 치료를 받기 위해 대기하는 시간이 필요하다. 또 어린이가 질환에 걸린 경우에는 여성 보호자가 동반하는 경우가 대부분이다.

본 연구에서는 급성 호흡기 질환으로 입원하는 경우는 고려하지 않고 있을 뿐만 아니라 미완에 따른 소득상실분은 고려하지 않는다. 그러나 본 연구에서는 치료를 받기 위해 소요된 교통시간과 대기시간, 동반 보호자의 교통 및 대기 시간의 비용에 대해서는 감안한다. 이를 위해서는 사람들의 시간당 기회비용을 먼저 추정해야 한다.

「1998년 국민건강·영양조사」자료에는 가계소득은 있지만 개인소득은 없으므로 개인의 시간당 기회비용을 추정하기 어렵다. 그러므로 본 연구에서는 노동부에서 조사한 「1998년 임금구조 기 본통계조사」 자료\(^8\)을 이용하여, 유직자의 시간당 임금함수(wage functions)를 추정하여 개인별 특성을 감안한 유직자의 시간당 기회비용을 고려한다. 이러한 방식은 단순히 직종만을 고려한 시간당 임금을 반영하는 것보다 현실에 근접한 유직자의 시간당 기회비용을 추정하는 것이라고 볼 수 있다.

<표 3>에 본석에 이용된 유직자 3만 8,396명 자료의 기초통계가 제시되어 있다.

이 자료는 1998년도 유직자를 대표할 수 있도록 추출된 표본이기 때문에 모집단의 성격을 그대로 반영한 자료이다.

먼저 유직자의 임금방정식은 <표 3>에 정리되어 있듯이, 「1998년 임금구조 기본통계조사」자료에서 성별, 결혼 여부, 연령, 최종 교육수준, 표준직업분류에

\(^8\) 이용한 자료는 3만 8,396명의 임금 노동자의 소득과 노동시간에 대한 자료와 더불어 성별, 결혼여부, 연령, 교육수준, 직종 등에 대한 자료들을 포함하고 있다.
대기오염으로 인한 건강효과의 경제적 비용

〈표 3〉 임금함수의 설명변수 기초통계 및 추정결과

<table>
<thead>
<tr>
<th>변수 및 기초통계</th>
<th>변수명</th>
<th>변수설명</th>
<th>평균</th>
<th>표준편차</th>
<th>계수값</th>
<th>$t$값</th>
<th>한계효과(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONST</td>
<td>상수항</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEX</td>
<td>성별(여 = 0, 남 = 1)</td>
<td>0.73</td>
<td>0.44</td>
<td>0.240</td>
<td>23.1***</td>
<td>8135</td>
<td></td>
</tr>
<tr>
<td>MAR</td>
<td>미혼 = 0, 기혼 = 1</td>
<td>0.69</td>
<td>0.46</td>
<td>0.102</td>
<td>8.3***</td>
<td>3440</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>나이</td>
<td>35.6</td>
<td>10.1</td>
<td>0.136</td>
<td>44.5***</td>
<td>4605</td>
<td></td>
</tr>
<tr>
<td>AGES</td>
<td>나이(^2)</td>
<td>1370</td>
<td>794</td>
<td>-0.001</td>
<td>-40.4***</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>MID</td>
<td>종종 = 1, 그외 = 0</td>
<td>0.11</td>
<td>0.31</td>
<td>0.096</td>
<td>4.4***</td>
<td>3252</td>
<td></td>
</tr>
<tr>
<td>HIGH</td>
<td>고졸 = 1, 그외 = 0</td>
<td>0.43</td>
<td>0.50</td>
<td>0.440</td>
<td>20.7***</td>
<td>14899</td>
<td></td>
</tr>
<tr>
<td>COLL</td>
<td>전문대졸 = 1, 그외 = 0</td>
<td>0.11</td>
<td>0.32</td>
<td>0.482</td>
<td>19.1***</td>
<td>16324</td>
<td></td>
</tr>
<tr>
<td>UNIV</td>
<td>대학졸 이상 = 1, 그외 = 0</td>
<td>0.30</td>
<td>0.46</td>
<td>0.712</td>
<td>28.7***</td>
<td>24125</td>
<td></td>
</tr>
<tr>
<td>OC1</td>
<td>직종 1(^{1/2}) = 1, 그외 = 0</td>
<td>0.03</td>
<td>0.16</td>
<td>1.154</td>
<td>37.8***</td>
<td>39075</td>
<td></td>
</tr>
<tr>
<td>OC2</td>
<td>직종 2(^{1/2}) = 1, 그외 = 0</td>
<td>0.16</td>
<td>0.36</td>
<td>1.089</td>
<td>47.4***</td>
<td>36892</td>
<td></td>
</tr>
<tr>
<td>OC3</td>
<td>직종 3(^{1/2}) = 1, 그외 = 0</td>
<td>0.12</td>
<td>0.33</td>
<td>0.970</td>
<td>44.0***</td>
<td>32863</td>
<td></td>
</tr>
<tr>
<td>OC4</td>
<td>직종 4(^{1/2}) = 1, 그외 = 0</td>
<td>0.21</td>
<td>0.41</td>
<td>0.944</td>
<td>46.4***</td>
<td>31983</td>
<td></td>
</tr>
<tr>
<td>OC5</td>
<td>직종 5(^{1/2}) = 1, 그외 = 0</td>
<td>0.05</td>
<td>0.22</td>
<td>0.692</td>
<td>28.2***</td>
<td>23434</td>
<td></td>
</tr>
<tr>
<td>OC6</td>
<td>직종 6(^{1/2}) = 1, 그외 = 0</td>
<td>0.002</td>
<td>0.04</td>
<td>1.147</td>
<td>12.6***</td>
<td>38888</td>
<td></td>
</tr>
<tr>
<td>OC7</td>
<td>직종 7(^{1/2}) = 1, 그외 = 0</td>
<td>0.15</td>
<td>0.35</td>
<td>0.759</td>
<td>38.6***</td>
<td>25725</td>
<td></td>
</tr>
<tr>
<td>OC8</td>
<td>직종 8(^{1/2}) = 1, 그외 = 0</td>
<td>0.22</td>
<td>0.41</td>
<td>0.656</td>
<td>34.8***</td>
<td>22222</td>
<td></td>
</tr>
</tbody>
</table>

| Adj R-square | 0.3459 |

2) *, **, ***는 각각 유의수준 10%, 5%, 1%에서 통계적으로 유의함을 나타낸다.
3) 한계효과는 $\beta \times (HOURWAGE\text{의 평균})$에 의해 계산됨.

따라서 직종을 고려하여 시간당 임금함수를 추정하였다. 시간당 임금함수는 다음과 같이 구체적으로 표현할 수 있다.
신영철

\[ \text{Log} (\text{HOURWAGE}) = W (\text{SEX, MAR, AGE, AGES, MID, HIGH, COLL, UNIV, OC1, OC2, OC3, OC4, OC5, OC6, OC7, OC8}) \]
4. 평균 의료비용의 산정

급성 호흡기 질환자가 의료기관을 외래로 방문하여 치료받는 경우의 총의료비용에는 직접 현금으로 지불하는 치료경비는 물론 치료받기 위해 소요한 교통 시간과 대기시간 등의 시간비용도 합산할 필요가 있다. 또 여린이의 경우 동반 보호자가 있는 것으로 가정해서 그에 대한 시간 비용도 감안할 필요가 있다.

먼저, 급성 호흡기 질환자들이 직접 현금으로 지출한 의료비용만을 고려해서 나온 평균값을 <분석 1>에 의한 평균 의료비용이라고 한다.

한편 유직자인 급성 호흡기 질환자의 개인별 특성을 반영한 시간당 임금을 추정하여 치료를 받기 위해 소요한 시간의 기회비용으로 반영할 수 있다. 이를 위해 「1998년 국민건강·영양조사」에서의 유직자인 급성 호흡기 질환자의 특성 (즉, 성별, 결혼여부, 나이, 교육수준, 직종)을 반영한 시간당 임금을 도출하기 위해 앞 설에서 「1998년 임금구조 기본통계조사」 자료로부터 추정한 시간당 임금함수를 이용한다. 바꾸어 말하면 앞 설에서 추정한 시간당 임금함수에 유직자인 급성 호흡기 질환자의 개인특성변수를 대입하여 시간당 임금을 계산하는 과정을 거친다. 그 다음에 식 (17)을 이용하여 유직자인 급성 호흡기 질환자가 치료를 받기 위해 소요한 시간의 기회비용을 포함한 총의료비용을 계산한다.

\[
\text{총의료비용} = \text{직접지불의료비} + \left(2 \times \text{방문횟수} \times \text{편도소요시간} \right) + \text{대기시간} \times \text{시간당임금} \\
\text{(17)}
\]

무직자의 경우에는 우선 시간의 기회비용을 0이라고 처리하는데, 현실적으로 소득이 없기 때문에 소요한 시간의 기회비용은 없다고 본 것이다. 그러므로 무직자인 급성 호흡기 질환자의 경우는 실제로 지출한 의료비용만 포함하게 된다. 이러한 점에서 도출한 총의료비용의 평균값을 <분석 2>에 의한 평균 의료비용이라고 한다.
표 4 급성 호흡기 질환 건당 의료비용 분석

<table>
<thead>
<tr>
<th>분석방법</th>
<th>분석방법 설명</th>
<th>평균비용 (원)</th>
<th>표준편차 (원)</th>
</tr>
</thead>
<tbody>
<tr>
<td>분석 1</td>
<td>직접지출 의료비만 고려함</td>
<td>5,600</td>
<td>7,800</td>
</tr>
<tr>
<td>분석 2</td>
<td>직접지출 의료비 고려함(분석 1)</td>
<td>15,390</td>
<td>28,370</td>
</tr>
<tr>
<td></td>
<td>유사자의 경우 방문을 위한 소요시간 및 대기시간의 시간당 인금 고려함</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>무사자의 시간당 인금=0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>분석 3</td>
<td>직접지출 의료비 고려함(분석 1)</td>
<td>33,440</td>
<td>43,230</td>
</tr>
<tr>
<td></td>
<td>유사자의 경우 방문을 위한 소요시간 및 대기시간의 시간당 인금 고려함</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>무사자의 의료서비스를 받기 위해 소요된 시간의 기회비용 고려</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15세 이상 남성환자</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 단순노무직 남성 평균임금(1만 5,600원)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15세 이상 여성환자 및 14세 이하의 남녀환자</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 단순노무직 여성 평균임금(1만 659원)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

그런데 무사자의 경우도 임금소득이 없다고 해서 치료를 받기 위해 시간의 기회비용이 없다고 처리하는 것은 주부와 같은 무사자의 노동생산력의 가치를 무시하는 것과 마찬가지이다. 이러한 점을 보완하기 위해 무사적인 15세 이상의 남성 질환자의 시간당 기회비용을 단순 노무직 남성의 시간당 평균임금인 1만 5,600원, 무사적인 15세 이상의 여성 질환자의 시간당 기회비용을 단순 노무직 여성의 시간당 평균임금인 1만 659원을 감안할 수 있다. 또한 14세 이하의 환자의 경우에 는 여성 보호자가 동반자로 같이 있는 경우가 대부분이므로 그러한 점을 감안하여 이들이 치료를 받기 위해 소요된 시간의 기회비용으로 단순 노무직 여성의 시간당 평균임금 1만 659원을 이용한다. 이는 무사자의 노동생산력이 같은 성별의 단순 노무직 노동자와 같다고 가정한 것으로 무사자의 노동생산력을 최
기억모으므로 인한 건강과의 경제적 비용

지하도로 인정한 것으로 볼 수 있다. 이모한 가정에서 분석된 총의료비용의 평균값을 <분석 3>에 의한 평균 의료비용이라고 한다. 이 분석은 급성 호흡기 질환자가 유적자이거나 무적자이거나 앞서 언급한 시간당 기회비용을 감안하여 식 (17)로부터 총의료비용을 계산하게 된다.

그 결과는 <표 4>에 나타나 있듯이, <분석 1>에 의한 급성 호흡기 이환의 평균 의료비용은 약 5,600원(표준편차는 7,800원)이다. 그러나 <분석 2>에 의한 급성 호흡기 이환의 평균 의료비용은 약 1만 5,390원(표준편차는 2만 8,370원)이고, <분석 3>에 의한 평균 의료비용은 약 3만 3,440원(표준편차는 4만 2,230원)이다. <분석 1>의 평균 의료비용에 비해 <분석 2>와의 평균 의료비용은 약 3배 이고, <분석 3>의 평균 의료비용은 <분석 1>의 약 6배에 이른다.

<분석 3>에 따르면 유적자와 무적자의 시간비용을 고려한 평균 의료비용에서 직접지출의료비는 16.7% (=5,600/33,440×100), 유적자인 질환자가 의료 서비스를 받기 위해 소요한 시간비용은 29.3% (=15,390/5,600×100), 무적자인 질환자가 의료서비스를 받기 위해 소요한 시간비용은 54.0% (=33,440−15,390)/33,440×100)를 차지하고 있음을 알 수 있다. 결국 급성 호흡기 질환으로 의료기관을 외래로 방문하여 치료를 받은 경우에 치료를 받기 위해 소요하는 시간으로 인한 비용이 평균 의료비용에서 80% 이상을 차지하며, 치료를 받기 위해 소요한 시간의 기회비용이 직접 지출된 의료비의 5.0배나 된다는 것을 알 수 있다. 또한 유적자의 시간 기회비용을 반영한 <분석 2>에 따르더라도 평균 의료비용에서 직접 지출한 의료비가 36.4%이고 소요한 시간의 기회비용이 63.6%를 차지하여 직접 지출한 의료비의 1.7배에 이르고 있다.

이제 대기오염수준이 악화되는 경우 급성 호흡기 질환 발생으로 인한 총의료비용이 어느 정도인지, 또는 특정한 환경정책으로 인한 대기오염수준이 개선되는 경우 급성 호흡기 질환율의 감소에 의한 총의료비용의 감소는 어느 정도인지 알아보자.

9) 무적자의 노동생산력을 보다 적극적으로 인정한 수 있는 방법은 동일한 특성을 갖는 유적자와 같다고 보는 방법일 수 있다고 생각한다.
신 영철

먼저 대기오염으로 인한 급성 호흡기 질환의 초과 발생(또는 감소) 건수는 다음과 같다.\(^{10}\)

\[
(RR - 1) \times B_a \times \Delta NO_2 \times POP
\]

(18)

여기서 \(RR\)은 특정 오염물질의 단위 변환(본 연구에서는 0.01ppm)에 따른 상대적 위험도이고, \(B_a\)는 급성 호흡기 질환의 기준 질환율(baseline morbidity)로서 정해진 기간 동안에 일정한 수의 사람들에게서 발생한 급성 호흡기 질환 건수를 의미한다. 그리고 \(\Delta NO_2\)는 이산화질소의 농도 변화인데, 상대적 위험도 \(RR\)을 정의할 때 이용한 오염물질의 단위 변화로 나눈 값을 사용한다. 그리고 \(POP\)은 이러한 변화의 영향을 받는다고 생각되는 대상 인구의 수이다.

만약 '1998년 국민건강·영양조사'에서 급성 호흡기 질환자가 발생한 지역의 이산화질소의 평균치인 0.027ppm에서 10%의 농도(0.0027ppm) 변화가 발생한다면 급성 호흡기 질환 건수가 어느 정도 변화하게 될지에 대해 생각해 보자.

 이를 위해 식 (18)에 앞서 추정된 급성 호흡기 이환함수에서 이산화질소의 상대적 위험도 (\(RR\)) 1.00716을 이용한다. 그리고 '1998년 국민건강·영양조사'에서는 조사시점으로부터 2주 전부터 조사시점까지 발생한 질환에 대해 조사하였는데, 그 조사로부터 나온 2주간의 급성 호흡기 질환 발생률인 175.93 (건)/1,000(명)을 \(B_a\)로 사용한다. 이는 2주 사이에 1,000명당 급성 호흡기 질환 이 175.93건 발생했다는 것을 의미하고 있다. 한편 여기서 \(\Delta NO_2\)는 0.0027/0.01 = 0.27이고 대상 인구 \(POP\)는 전국민(4,643만 명)으로 한다면, 식 (18)에 따를 경우 2주간 1만 5,770건의 급성 호흡기 질환 건수가 변화하게 돼 알 수 있다.

이 발생 건수에 유의자와 무작위가 치료를 받기 위해 소요한 시간의 기회비용을 고려한 <분석 3>에서 계산된 평균 의료비용 3만 3,440원을 곱하면 총의

대기오염으로 인한 건강효과의 경제적 비용

료비용은 약 5억 3,000만 원에 이른다. 이 금액 중 16.7%에 해당하는 8,800만 원은 질환자가 직접 현금으로 지출하는 의료비용(분석 1)이고, 29.3%에 해당하는 1억 5,500만 원은 유직자가 치료를 받기 위해 소요한 시간의 기회비용이고, 나머지 54.0%에 해당하는 2억 8,500만 원은 무직자가 치료를 받기 위해 소요한 시간의 기회비용에서 발생한다. 이 때 무직자의 시간의 기회비용이 큰 특이를 차지하는 이유는 14세 이하의 어린이의 경우에도 동반 보호자가 있는 것으로 가정하여 치료를 받기 위해 소요한 시간에 단순 노무직 여성의 평균 임금을 고려했기 때문이다.

결국 이산화질소 농도가 10% 변화하게 되면 전국적으로 급성 호흡기 질환 발생건수가 2주간 1만 5,770건 변화하고 그로 인해 환자가 직접 지불하는 의료비용은 8,800만 원이지만, 질환자가 치료를 받기 위해 소요한 시간의 기회비용을 고려한다면 그 경제적 비용은 유직자만 고려할 경우에는 총 약 2억 4,000만 원, 유직자뿐만 아니라 무직자도 포함하여 고려할 경우 총 약 5억 3,000만 원에 이른다고 볼 수 있다. 그러므로 급성 호흡기 질환에 의한 경제적 비용 중에서 직접 지출하는 의료비용(분석 1)보다 치료를 받기 위해 소요한 시간의 기회비용이 1.7~5.0배 더 큰 비중을 차지하고 있음을 알 수 있다.

그러면 이 값은 급성 호흡기 질환에 의한 의료기관의 외래 방문의 경우만 고려한 것으로, 급성 호흡기 질환에 따른 활동제한이나 절대적병력에 대한 고려는 하지 않은 상태에서 계산된 값이므로 이 값의 의미를 해석할 때 그러한 점을 감안해야 할 것이다.

V. 결 론

본 연구는 '1998년 국민건강·영양조사' 자료를 이용하여 대기오염수준이 급성 호흡기 질환에 어느 정도의 영향을 미치고 그 영향의 경제적 가치는 어느
정도인지 알아보고자 하였다.

이를 위해 기존의 농도-반응 함수와는 달리 개인의 건강에 영향을 준다고 생각되는 개인의 특성 변수들을 고려한 급성 호흡기 이환 함수를 추정하였다. 이는 개인의 건강에 직접적으로 영향을 주고 있는 변수들을 배제한 상태에서 대기오염수준과 이환과의 관계를 분석하는 농도-반응 함수에서 발생하는, 고려하지 못한 변수들(omitted variables)에서 기인하는 편의를 회피할 수 있게 해 준다. 본 연구에서 추정된 급성 호흡기 이환 함수에서 도출된 상대적 위험도는 이산화질소(NO₂)가 0.01ppm 단위 변화에 대해 1.00716로 추정되었다. 이는 이산화질소가 평균농도인 0.027ppm에서 10% (0.0027ppm)만큼 농도가 변화하면 급성 호흡기 질환의 발생률이 0.176% 변화함을 의미한다.

그리고 급성 호흡기 질환 건강 의료비용의 계산에 환자가 직접 지출하는 의료비용 외에 의료기관을 방문하기 위해 소요되는 교통시간과 치료를 받기 위해 대기한 시간에 대한 비용과 어린이의 경우 동반자의 시간 비용도 포함하였다. 이를 위해 개인의 시간당 기기비용을 계산하기 위해 「1998년 임금구조 기본통계조사」 자료를 이용하여 임금단위를 추정하였다. 그 결과 급성 호흡기 질환을 의료기관외에서 가서 지출하는 직접 의료비는 5,600원 (<분석 1이었지만, 유직자가 치료를 받기 위해 소요한 시간비용을 감안하는 경우 총의료비의 평균은 1만 5,390원, 유직자와 더불어 무직자 및 어린이 등반 보호자가 치료를 받기 위해 소요한 시간의 기기비용을 반영할 때 총의료비의 평균은 3만 3,440원으로 직접 지출한 의료비용보다 시간의 기기비용으로 인한 비중이 총의료비용에서 63.6 ~ 83.3%를 차지하고 있음을 알 수 있다.

결국 이산화질소 농도가 10% 변화하게 되면 전국적으로 급성 호흡기 질환 발생건수가 2주간 1만 5,770건 변화하고 그로 인해 환자가 직접 지불하는 의료비용은 8,800만 원이지만, 환자가 치료를 받기 위해 소요한 시간의 기기비용을 고려한다면 그 경제적 비용은 유직자만 고려할 경우에는 총 약 2억 4,000만 원, 유직자뿐만 아니라 무직자도 포함하여 고려할 경우 총 약 5억 8,000만 원에 이른다고 볼 수 있다. 그러므로 급성 호흡기 질환에 의한 경제적 비용 중에서
대기오염으로 인한 건강효과의 경제적 비용

직접 지출하는 의료비용(<분석 1>)보다 치료를 받기 위해 소요한 시간의 기회 비용이 1.7~5.0배 더 큰 비중을 차지하고 있음을 알 수 있다.

이 연구와 관련하여 앞으로 연구되어야 할 방향은 우선, 「1998년 국민건강·영상조사」 자료와 대기오염수준 자료를 보다 정지하게 연결짓는 작업을 해야 할 필요가 있다. 왜냐하면 그러한 작업의 결과에 따라 급성 호흡기 이환 합수에 의해 도출되는 대기오염수준에 따른 상대적 위험도가 변화될 가능성이 있다고 생각하기 때문이다.

둘째, 시간당 기회비용을 추정하기 위해 본 연구에서 추정한 단순한 임금합수보다 정교한 임금합수를 추정해서 이용할 필요가 있다. 시간당 기회비용이 차지하는 비중이 크기 때문에 임금합수가 어떻게 추정되는가에 따라 결과가 변화될 수 있기 때문이다. 지역별 환경오염수준과 임금수준과의 상관성이 있다고 볼 수 있으므로 지역별 임금합수를 추정할 수 있다면, 보다 정확한 시간의 기회비용을 이용할 수 있을 것이다.

셋째, 자료가 허용하는 한에서 급성 호흡기 질환의 연령별·성별·지역별로 구분된 상대적 위험도의 추정을 시도해 볼 필요가 있다. 또 그 구분에 따른 총 의료비용을 각각 추정할 수 있다면, 대기오염수준 변화에 따른 경제적 비용의 추정이 가능해 보다 정확하게 이루어질 수 있을 것이다.

참고 문헌

2. 남정수 외, 「98 국민건강·영상조사 총괄보고서」, 보건복지부, 1999a.
3. 임영숙, 「대기오염이 건강에 미치는 영향에 대한 가치평가: 회의행위접근법을 사용하여」, 「환경경제연구」, 제7권, 제1호, 1998, pp. 1~23.
신영철


Estimating the Cost of Air Pollution on Morbidity: Focusing on Hospital Visit for Acute Respiratory Diseases

Young Chul Shin

This study used a discrete choice model to investigate an association between air pollution and hospital visits for acute respiratory symptoms with the national health interview survey conducted in 1998 in South Korea. The results showed that NO$_2$ and TSP were significantly related to hospital visits in a single-pollutant model, but when they were simultaneously considered, only NO$_2$ remained significant. It was estimated as NO$_2$ level increased by 10% (0.0027 ppm) from 0.027 ppm (the mean NO$_2$ level), hospital visits increase by 0.176%. This study also measured respondent’s out-of-pocket expense and the time cost for commuting and waiting for the visit. We found that on the average, out-of-pocket expense is 5,600 won per hospital visit, but the total cost per hospital visit is measured at 33,440 won with time cost of commuting and waiting at 27,840 won. Time cost was over 63.6~83.3% of the total cost per hospital visit.