DOI QR코드

DOI QR Code

Dynamic Extinction of Solid Propellants by Depressurization of Combustion Chamber

연소실 압력 강하에 의한 고체 추진제의 동적 소화


Abstract

Dynamic extinction of solid propellants subjected to rapid pressure drop was studied with the aid of energy equation of condensed phase and flame model in gas phase. It is found that the total residence time($\tau_\gamma$) which measures the residing time of fuel in the reaction zone may play a crucial role in determining the dynamic response of the combustuion to extinction. Residence time was modeled by various combinations of diffusion and chemocal kinetic time scale. Effect of pressure history coupled with chamber volume on the extinction response was also performed and was found that dynamic extinction is more susceptible in a confined chamber than in open geometry. And, dynamic extinction was revealed to be affected profoundly by diffysion time scale rather than chemical kinetic time scale.

응축영역 에너지 방정식과 기체 영역에 관한 화염모델을 사용하여 연소실 압력 강하에 반응하는 고체 추진제의 동적 소화 특성을 살펴보았다. 화염모델에서는 기체가 반응영역을 통과하는데 걸리는 시간(잔존시간, r,)이 동적 소화 특성을 결정하는 중요한 인자임을 확인하였다. 본 논문에서는 r,을 확산과 화학반응 시간의 다양한 조합으로 가정하였으며 이를 이용하여 동적 소화 특성을 살펴보았다. 또한 연소실 부피의 유한함에 따른 압력변화와 이에 대한 연소의 동적 반응도 살펴보았다. 동적 소화는 화학반응 시간보다는 확산 시간에 의하여 커다란 영향을 받는 현상임을 확인하였다. 그리고 연소실 부피가 유한한 경우가 무한한 경우보다 복잡한 동적 소화 특성을 보여주었다.

Keywords

References

  1. L. De Luca, "Extinction Theories and Experiments", Chap. 12, vol 90, AIAA, New York, 1984.
  2. C. C. Ciepluch, "Effect of Rapid Pressure decay on Solid Propellant Combustion", ARS Journal, Vol. 31, 1961, pp.1112-1122. https://doi.org/10.2514/8.5727
  3. C. L. Merkle, S. L. Turk and M. Summerfield, "Extinction of Solid Propellants by Depressurization Effects of Propellant Parameters", AIAA Paper 69-176, 1969.
  4. J. S. T'ien, "A Theoretical Criterion for Dynamic Extinction of Solid Propellants by Fast Depressurization", Combusiton Science and Technology, Vol. 9, 1974, pp.37-39. https://doi.org/10.1080/00102207408960334
  5. R. Donde, G. Riva and De Luca, "Experimental and Theoretical Extinction of Solid Rocket Propellants by Fast Depressurization", IAF Paper 82-361, 1982.
  6. L. Galfetti, F. Turrini and De Luca, "Modeling of Transient Combustion in Solid Rocket Motors", ISAS, 1988.
  7. H. K Suhas and T. K. Bose, "A Mathematical Model to Predict Transient Burning Rate and Pressure Decay Rates for Extinction of Composite Propellants", Combustion and Flame, Vol 28, 1977, pp. 145-153. https://doi.org/10.1016/0010-2180(77)90020-7
  8. K. K. Kuo, and J. P. Gore, "Transient Burning of Solid Propellants", Chap. 11, Vol 90, AIAA, New York, 1984.
  9. L. De Luca, "Theory of Nonsteady Burning and Combustion Stability of Solid Propellants by Flame Models", Nonsteady Burning and Combustion Stability of Solid Propellants, edited by L. De Luca, E. W. Price, and M. Summerfield, Vol. 143, Progress in Astronautics and Aeronautics, AIAA, Chap. 14, 1992.
  10. A. A. Zenin, "Thermophysics of Stable Combustion Waves of Solid Propellants", Nonsteady Burning and Combustion Stability of Solid Propellants, edited by L. De Luca, E. W. Price, and M. Summerfield, Vol. 143, Progress in Astronautics and Aeronautics, AIAA, Chap. 6, 1992.
  11. L. Galfetti, G. Riva and C. Bruno, "Numerical Computations of Solid-Propellant Nonsteady Burning in Open or Confined Volumes", Nonsteady Burning and Combustion Stability of Solid Propellants, edited by L. De Luca, E. W. Price, and M. Summerfield, Vol. 143, Progress in Astronautics and Aeronautics, AIAA, Chap. 6, 1992.
  12. 정호걸, 이창진, “압력상승이 있는 고체 추진제 비정상 연소에서 복사 열전달 해석”, 제29권, 제2호, 항공우주학회지, 2001, pp.94-100.

Cited by

  1. A Study on Characteristic of Extinguishment for Solid Propellants Composition by Rapid Depressurization vol.21, pp.5, 2017, https://doi.org/10.6108/KSPE.2017.21.5.037