
International Journal ofCAD/CAM Vol. 2, No. 1, pp. 23-28 (2002) International
Journal of
CAD/CAM

www.ijcc.org

A Sweep-Line Algorithm and Its Application to Spiral Pocketing

Tawfik T. EL-Midany1, Ahmed Elkeran1 wmd Hamdy lawfik2^
}Prod. Eng. & Mechanical Design Dept. Mansoura University, Mansoura, Egypt
2Technology Development Dept Workers' University, Mansoura, Egypt

Abstract - This paper presents an efficient line-offset algorithm for general polygonal shapes with islands. A developed sweep
line algorithm (SL) is introduced to find all s야f-intersectifm points accurately and quickly. The previous work is limited to
handle polygons that having no line-segments in parall이 to sweep-line directions. The proposed algorithm has been
implemented in Visual C++ and applied to offset point sequence curves, which contain several islands.

Keywords: Monotone chain, sweep-line^ self-intersection^ spiral pocketing^ line-offset

1. Intrcxluction

In order to machine complex pockets on milling
machines, it is necessary to fill 2D areas with a back
and forth sweeping motions of the cutting tool. There
are two sweeping motions, spiral offset and zigzagging
paths. The spiral offset is defined as a locus of the
points, which are at constant distance d along the normal
from the generator curve. Spiral offsets are widely used
in vario니s applications, such as tool path generation
for 2.5-D pocket machining [3, 9, 14, 15, 2이, 3D NC
machining, and access space representations in robotics.
Spiral milling is an important operation in CAD/CAM,
and the problem has teen widely studied, mostly, as a
pockehmachinin흥 problem through three approaches.
Line-offset (pair-wise) [8, 13, 17], Vbronoi diagram [10],
and pixel-based approach [4]. Voronoi diagram needs a
very caref니 implementatio豊 to avoid numerical com
putational error [10]. Pixel-based approach would require
a large amount of memory and an excessive computation
time to achieve an adequate level of precision [5]. Line
offset approach is more stable, not prone to computational
errors, and would not require a large amount of memory
[5]. Self-intersection is one of 난須 main problems in
line-offset so, it is an essentia task for practical
applications to detect all polygons of the self-intersection
points correctly and generate valid polygons. The
literature survey on offset curve and self-intersection
polygons prior to 1992 was conducted by Pham [18]
and after 1992 by Takashi [22]. The self-intersection
polygons can be handled through two approaches, line
segments intersections [7, 18] and sweep-line [1, 11, 12],
Sweep-line is more efficient than line-segments inter
sections [21]. Bentley and Ottmann 1979 [1] introduced a

*Corresponding author:
E-mail: tawfikhtm @yahoo.com

sweep-line algorithm to find all k intersections among n
line-segments with an O((n+Z：).log n) time complexity.
Chazelle et al. [2] and Mehlhom et al. [16] developed
Bentley et al. algorithm [1], but their algorithm is more
complicated to implement [17]. Park et al. 98, developed
a sweep-line algorithm to find all intersections k among
polygonal chain which has m monotone and n line
segments with an O((/i+k).log m) time complexity, but
it is only restricted for polygons which contain line
segments nonparallel to sweep-line direction.

In this paper, a sweep-line algorithm, for general
polygonal shapes with islands, is developed. The
developed algorithm can be applied to find self-
ime宾cthm points, even if the sweep-line was parallel
to one or more line-segment in the polygon. Also, invalid
loops detection and removing algorithm are proposed.
The proposed algorithm has been implemented in Visual
C++, and extensively tested for several polygonal
shapes. The results show robustness, and quickness of
the developed algorithm for offsetting general polygonal
shapes with islands.

2. Definitions and Terminology

This section contains some preliminary definitions
and terms that are used throughout this paper. The
following definition of a monotone chain is based on
those of Preparata et al. [19] and Park et al. [17]. To
handle the chains with line-segments parallel to sweep
line, parallel monotone is s나ggested in this paper.

2.1. Definition of Chain
Chain is a connected sequence of line segments, and

a polygon is a chain that is closed and non self
intersecting [17]. It is assumed that a consecutive
collinear seq나ence of line-segments is merged together
into a single line segment.

http://www.ijcc.org
yahoo.com

24 International Journal ofCAD/CAM Vol. 2, No. 1, pp. 23〜28

©Left Extreme 日 Down Extreme
Q Right Extreme 田 Up Extreme
--------------------- -

Fig. 3. Monotone & extreme points.

22 Definition of Monotone Chain
A chain C in Fig. 1 is a monotone with respect to a

line ZL, if C has at most one intersection point with a
line L perpendicular to ZL [17], The line ZL is called
the monotone direction, and 由e line L becomes a sweep
line. It is assumed that ZL-line has an x-axis direction.
There are two types of monotone: non-parallel monotone
(which contains no parallel line-segment to sweep-line
direction), and parallel monotone (which is only one
line segment parallel to sweep-line direction).

23. Definition of ParaHel Monotone Chain (PMC)
The Monotone is parallel, if it has at most one line

segment whose direction is parallel to sweep-line Fig.
2. It has also two vertices (Pl, P2) i.e. two sweep-lines
Li and L2 at Pl and P2 respectively. The two sweep
lines are overlapped. It is assumed that the sweep-line
L intersects the PMC at point Pl and sweep~line L2
intersects the PMC at point P2. While traversing a
chain, each of the locals "extreme" points (with respect
to their x-values) are marked either as a left or right
extreme point and up or down-extreme poin후 as follows:

2.4. Definition of Extreme Point
A point in a chain is called a left-extreme and/or

right-extreme point, if its x-value is locally minimum
or maximum. The monotone contains right & left extreme

ipi

Up PM
(UPM)

Sweep-lines □

Down PM
(DPM)

JP2
j Sweep-lines
i L게, I”

Fig. 2. Parallel Monotone Chain (PMC).

point [17]. PMC contains two points: the first point (Pl
Fig. 2) is an up-extreme point and the last point (P2
Fig. 2) is a down-extreme point, like right and left
extreme points in general chain (non parallel chain).

2.5. Definition of Sweep Step (SS) & Monotone
Sweep Value (MSV)

Sweep-step (SS) is the x-coordinate of SL, and
intersection of SL with certain monotone is called
monotone sweep value (MSV)

2.6. Monotone Chains & Extreme Points
Shown in Fig. 3 are local extreme points of a closed

polygonal chain consisting of 7 points (or 7 line-
segnients): There are two left-extreme points, PO and
P3, two right-extreme points, P2 and P4, one up-extreme
point, P3, and one down-extreme point, P2. The chain
can easily be divided into monotone chains. Since left
& right-extreme points, up & down-extreme 호oim
alternate, each sequence of the line-segments starting
from left to right-extreme point or from up-to down
extreme point (or vise versa) is identified as a monotone
chain. The sweep-line steps are defined at vertices of
polygonal chain and sorted by a quick-sort algorithm. It
is assumed that a vertical sweep-line is used in the
developed algorithm. There is no problem, if the chains
contain line-segments in pai'allel with the sweep-line
through using of PMC, i.e. the fundamental limitation
of the Park et aL [17] sweep-line method is removed.

3. Sweep-line Algorithm (SL)

The proposed polygonal-chain intersection algorithm
mainly works on a set of monotone chains. The properties
of a monotone chain are: (1) it has no self-intersections
among its line segments, and (2) its points are in a
sequence order of x-values allowing an efficient use of
the sweep-line method. The following is the explanation
of sweep-line algorithm.

//Sweep Line Algorithm
SweepLine (Array of Points [n])

Tawfik T. EL-Midany, et al. A Sweep-Line Algorithm and Its Application to Spiral Pocketing 25

Polygon Convert points data to lines /* n-lines *
/ and store them in a polygon;
Polygon-^ Filter;
/* Remove collinear and close this polygon if not
closed 더‘/

Calculate extreme point (Polygon);
/* Left or right and up or down for parallel
monotone */
PolygonlbMonotones Convert polygon data to
m Monotones;
SweepLineArrayFind sweep-lines array;
for —0 until n do

for 0 until m do
if monotone=PMC and sweep-line is 1st
sweep then

take 1st of PMC as intersection points;
else if monotone=PMC and sweep-line is
2nd sweep then

take 2nd of PMC as intersection points;
else if monotone j intersects sweep-line i
then

Find y-intersection between sweep
line i and Monotone j and store them in

SLV[기j];
for i<~0 until m-1 do

for j-^i+1 until j<i do
for k—0 until n do

for kk*—k+l until kk<k do

if (sweep-line k intersects monotone i, j
and sweep-line kk intersects monotone j, i
respectively) then

Find intersection point;
/* Call intersection function */

else
continue; /* There is no intersection
found */

}
}
PolygonToMonotones (Array of Points [n])
(

Make min. left extreme is the first point of polygon;
for i—0 until n do
(

if (Line[i].DX>0) then
Define increasing monotone;

사se if (Line[i].DX<0) then
Define decreasing monotone;

else
Define PMC;

SweepLineArray(Array of Points [n])
{

for i<—0 until n do
Define sweep-line as a line through this point
with length=SWEEP_LENGTH;

Fig. 4. Data flow through sweep-line algorithm.

26 International Journal qfCAD/CAM VoL 2, No, 1, pp, 23〜28

/* where SWEEPJLENGTH is the length of sweep
line ‘시
Use quick-sort algorithm to sort sweep-lines based
on x-coordinates;

}
Where: n is the No, of points or line, m: is the No. of

monotones; Li眼.DX끄X2*X1 where X2, XI is the x-
coordinates of line end points.

4. Information Flow 나质。ugh the
Swwp-line algorithm

The point data are exported from CAD system in
DXF format and imported to data filter, Fig. 4. In this
step collinear points are removed, and stored in
monotones. These monotones are stored in monotone
chain. The sweep-line values are sorted and stored in
sweep chain. And then, monotone-intersection module
will find self-intersection points.

5.1이and Making Algorithm (IM)

The IM algorithm is proposed to handle the island
during pocketing, Fig. 5. The algoH나im contains the
following steps:

Step 1: Detect boundary a퍞d island polygons, make
boundary CCW, and island CW direction.

Step 2: Make one outward offset for island and
inward offset 랸ntil it meets for boundary up
to meet island offset. Store the generated
offset of boundary and island in temporary
polygons.

Step 3: Use SL to find self-intersection points for
the temporary polygon, and call detection
valid polygons [23] (DVP) to find all valid

Fig. 5. Island making.

polygons.

6. Applications

This section contains two parts: Part I, shows the
execution time for three-sample examples vs. offset
distance for full offset. These sample examples are
performed on PIII~8(X) MHz PC, the execution time
calculated through a built-in Visual C++ function (refer
to Fig. 6). It is assumed that the offset in the first
generated polygon=50% from a cutting tool diameter
and 90% for the remaining generated offset. Part II,
shows the relationship between the number of offset
and the execution time.

6.1. Part (I) Execution Time for Full Offset
As shown in Table 1, the execution time is decreasing

while the offset distance is increasing. This variation is
more significant for small offset distance, and almost

(b) Magician (c) Deer(효) Bearing Holder

Fig. 6. Proposed system sample example.

Tawfik T. EL-Midany, et al. A Sweep-Line Algorithm and Its Application to Spiral Pocketing 27

Ihble 1. Sample example execution time vs. offset distance

Offset
(mm)

Bearing Holder
ms

Deer
ms

Magician
ms

1 1128 522 2685
7 202 127 555

10 132 127 438
15 106 93 473
20 90 85 305
25 75 82 285

一♦— Bearing Container

—■— Deer
.-A.Magician

30001

Offset (mm)

Fig. 7. Execution Time vs. offset (for Full offset).

linearly with large values of offset distance. These results
are plotted on a line-chart shown in Fig. 7 for three-
sample examples (bearing holder, deer, and magician).

62 Part (II) Effect of Repeated Offset
The relationship between the number of offset and

the execution time for the three-sample example is given
in Fig. 8.

This tig니re shows that the execution time is increasing
linearly for small values of offset and becomes almost

Table 2. Execution time vs. No of offset

No. of Offset Beating Holder Deer Magician

1 11 75 215
3 24 138 345
6 51 201 600

10 70 294 787
15 114 303 1235
20 152 344 1390
30 198 359 1541
50 241 359 1674

100 241 359 1674

constant for large values of repeating offset. This constant
variation occurs when the repeating oflset value becomes
closer to the full offset values of the application. Also,
the figure shows that Magician starts with increasing
rather sharply than Bearing Holder and Deer. This
sharp variation depends on the complexity of the shape
and the number of islands.

7. Conclusion

Presented in this paper an efficient line-offset algorithm
for general polygonal shapes with islands. A developed
sweep-line algorithm (SL) is introduced to find all self
intersection points accurately and quickly. The developed
algorithm is a considerable improvement over previous
work algorithms which were limited to handle polygons
that having no line-segments in parallel to sweep-li가e
directions. The proposed algorithms are tested through
several application examples.

References

[1] Bentley, J. L. and Ottmann, T. A. (1979), ^Algorithms for
reporting and counting geometric intersections,\ IEEE
Transactions on Computers, 643-647.

[2] Chazelle, B. and Edelsbrunner, H. (1992), "An Optimal
algorithm for intersecting line segments in the plane",
Journal of the Association for computing machinery,
39(1), L54.

[3] Chen, Y.J. and Ravani B. (1987), “Offs改 surface
generation and contouring in computer-aided design'5,
Journal of Mechanisms, Transmissions and Automation in
Design: ASME Transactions, 109(3), 133-142.

[4] Choi, B.K. and Kim, B.H. (1997), stDie-cavity pocketing
via cutting simulation", Computer Aided Design, 29(12),
837-846.

[5] Choi, B.K. and Park, S.C. (1999), “A pair-wise offset
algorithm for 2D point-sequence curve”，Computer-Aided
Design-31, 735-745.

[6] Dobkin, D., Guibas, L., Hershberger, J. and Snoeyink, J.
(1988), “Ar Efficient algorithm for finding the CSG
representation of a simple polygon”，Computer Graphics,
31-40.

[7] Gavrilova, M. and Rokne J.G. (2000), "Reliable line
segment intersection testing", Computer Aided Design.
737-745.

28 International Journal ofCAD/CAM Vol. 2, No, 1, pp. 23~28

[8] Hansen, A. and Arbab, F. (1992), SiAn algorithm for
generating NC tool paths for arbitrarily shaped pockets
with islands^, ACM Transactions on Graphics, 11(2),
152-182.

[9] Held, M. (1991), On the computational geometry of
p(Kket machining, Berlin, Germany: Springer-Verlag.

[10] H셨d, M. (2001), "VRONI: An Engineering Approach to
the Reliable and Efficient Computation of V^ronoi
Diagrams of Points and Line Segments", CGTA.

[11] Internet web-site (IWS-1), 'Algorithms for Intersecting
Segments^, < >
and <

>

http://www.cs.jhu.edu/~goodrich/teach/geom/
http://www.cs.jhu.edu/-go(^irich/teach/geoni/notes/

intersection.ps
[12] Internet web-site (IWS-2), 4 An efficient algorithm for

calculating red and blue line segment intersections*J -site.
<http:^ >.www.cs.unc.edu/-mantler/258/prop_slides.html

[13] Kalmanovichf, G. and Nisnevich, G. (1998), "Swift and
stable polygon growth and broken line of毎et", Computer-
Aided Design, 30(11), 847-852.

[14] Kuragano, T„ Sasaki, N.s and Kikuchi, A. (1988), 아The
FRESDAM system for designing and manufacturing
freeform objects,\ In: Martin R, editor USA-Japan Cross
Bridge. Flexible Automation, 93-100.

[15] Li, H.t Dong Z., and Vickers, G. W. (1998), "Optim시

Tool Path Generation for 2以D Milling of Dies and

Molds", SSM'98 Sculptured Surface Machining
Conference,

[16J Mehlhom, K, and Naher, S. (1994), 4An ImplemenUtion
of a sweep line algorithm for the straight line segment
intellection problem", Technical Report No. MPI-I-94-
160. Max-Planck-Institut fur Infbrmatik.

[17] Park, S.C., Shin H., and Choi B.K. (1998), “A sweep line
algorithm for polygonal chain intersection and its
applications,\ Proceeding of IFIP WG5.2 GEO-6
Conference in Tokyo University, 187-195.

[18] Pham, B. (1992), £tOffset curves and surfaces: a brief
survey", Computer Aided Design, 24(4), 223-231.

[19] Preparata, EP. and Shamos, M.I. (1985), ''Computational
geometry-An introduction,\ Springer Verlag, New York.

[2이 Rohmfeld, R.F. (1998), "IGB-offset curvesAo야) removal
by scanning of interval sequences", Computer Aided
Geometric Design, 15(3), 339-375.

[21] Schrder, P (CS138A 1999), "Line Segment
[22] Taka아d, M. (1 的9), "An overview of offset curves and

surfaces,\ Computer Aided Design, 165473.
[23] Yang, S.N. and Huang, M.L. (1993), “A new offset

algorithm based on tracing tedmi이ue'； Second ACM/
IEEE Symposium on Solid Modeling and Applications,
Montreal, Canada, 201-210.

http://www.cs.jhu.edu/%7Egoodrich/teach/geom/
http://www.cs.jhu.edu/-go(%255eirich/teach/geoni/notes/intersection.ps
http://www.cs.unc.edu/-mantler/258/prop_slides.html

