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Abstract - This paper presents an efficient line-offset algorithm for general polygonal shapes with islands. A developed sweep
line algorithm (SL) is introduced to find all s야f-intersectifm points accurately and quickly. The previous work is limited to 
handle polygons that having no line-segments in parall이 to sweep-line directions. The proposed algorithm has been 
implemented in Visual C++ and applied to offset point sequence curves, which contain several islands.

Keywords: Monotone chain, sweep-line^ self-intersection^ spiral pocketing^ line-offset

1. Intrcxluction

In order to machine complex pockets on milling 
machines, it is necessary to fill 2D areas with a back 
and forth sweeping motions of the cutting tool. There 
are two sweeping motions, spiral offset and zigzagging 
paths. The spiral offset is defined as a locus of the 
points, which are at constant distance d along the normal 
from the generator curve. Spiral offsets are widely used 
in vario니s applications, such as tool path generation 
for 2.5-D pocket machining [3, 9, 14, 15, 2이, 3D NC 
machining, and access space representations in robotics. 
Spiral milling is an important operation in CAD/CAM, 
and the problem has teen widely studied, mostly, as a 
pockehmachinin흥 problem through three approaches. 
Line-offset (pair-wise) [8, 13, 17], Vbronoi diagram [10], 
and pixel-based approach [4]. Voronoi diagram needs a 
very caref니 implementatio豊 to avoid numerical com
putational error [10]. Pixel-based approach would require 
a large amount of memory and an excessive computation 
time to achieve an adequate level of precision [5]. Line
offset approach is more stable, not prone to computational 
errors, and would not require a large amount of memory
[5].  Self-intersection is one of 난須 main problems in 
line-offset so, it is an essentia task for practical 
applications to detect all polygons of the self-intersection 
points correctly and generate valid polygons. The 
literature survey on offset curve and self-intersection 
polygons prior to 1992 was conducted by Pham [18] 
and after 1992 by Takashi [22]. The self-intersection 
polygons can be handled through two approaches, line
segments intersections [7, 18] and sweep-line [1, 11, 12], 
Sweep-line is more efficient than line-segments inter
sections [21]. Bentley and Ottmann 1979 [1] introduced a
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sweep-line algorithm to find all k intersections among n 
line-segments with an O((n+Z：).log n) time complexity. 
Chazelle et al. [2] and Mehlhom et al. [16] developed 
Bentley et al. algorithm [1], but their algorithm is more 
complicated to implement [17]. Park et al. 98, developed 
a sweep-line algorithm to find all intersections k among 
polygonal chain which has m monotone and n line
segments with an O((/i+k).log m) time complexity, but 
it is only restricted for polygons which contain line 
segments nonparallel to sweep-line direction.

In this paper, a sweep-line algorithm, for general 
polygonal shapes with islands, is developed. The 
developed algorithm can be applied to find self- 
ime宾cthm points, even if the sweep-line was parallel 
to one or more line-segment in the polygon. Also, invalid
loops detection and removing algorithm are proposed. 
The proposed algorithm has been implemented in Visual 
C++, and extensively tested for several polygonal 
shapes. The results show robustness, and quickness of 
the developed algorithm for offsetting general polygonal 
shapes with islands.

2. Definitions and Terminology

This section contains some preliminary definitions 
and terms that are used throughout this paper. The 
following definition of a monotone chain is based on 
those of Preparata et al. [19] and Park et al. [17]. To 
handle the chains with line-segments parallel to sweep
line, parallel monotone is s나ggested in this paper.

2.1. Definition of Chain
Chain is a connected sequence of line segments, and 

a polygon is a chain that is closed and non self
intersecting [17]. It is assumed that a consecutive 
collinear seq나ence of line-segments is merged together 
into a single line segment.
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Fig. 3. Monotone & extreme points.

22 Definition of Monotone Chain
A chain C in Fig. 1 is a monotone with respect to a 

line ZL, if C has at most one intersection point with a 
line L perpendicular to ZL [17], The line ZL is called 
the monotone direction, and 由e line L becomes a sweep 
line. It is assumed that ZL-line has an x-axis direction. 
There are two types of monotone: non-parallel monotone 
(which contains no parallel line-segment to sweep-line 
direction), and parallel monotone (which is only one 
line segment parallel to sweep-line direction).

23. Definition of ParaHel Monotone Chain (PMC)
The Monotone is parallel, if it has at most one line

segment whose direction is parallel to sweep-line Fig. 
2. It has also two vertices (Pl, P2) i.e. two sweep-lines 
Li and L2 at Pl and P2 respectively. The two sweep
lines are overlapped. It is assumed that the sweep-line 
L intersects the PMC at point Pl and sweep~line L2 
intersects the PMC at point P2. While traversing a 
chain, each of the locals "extreme" points (with respect 
to their x-values) are marked either as a left or right
extreme point and up or down-extreme poin후 as follows:

2.4. Definition of Extreme Point
A point in a chain is called a left-extreme and/or 

right-extreme point, if its x-value is locally minimum 
or maximum. The monotone contains right & left extreme

ipi
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Fig. 2. Parallel Monotone Chain (PMC). 

point [17]. PMC contains two points: the first point (Pl 
Fig. 2) is an up-extreme point and the last point (P2 
Fig. 2) is a down-extreme point, like right and left 
extreme points in general chain (non parallel chain).

2.5. Definition of Sweep Step (SS) & Monotone 
Sweep Value (MSV)

Sweep-step (SS) is the x-coordinate of SL, and 
intersection of SL with certain monotone is called 
monotone sweep value (MSV)

2.6. Monotone Chains & Extreme Points
Shown in Fig. 3 are local extreme points of a closed 

polygonal chain consisting of 7 points (or 7 line- 
segnients): There are two left-extreme points, PO and 
P3, two right-extreme points, P2 and P4, one up-extreme 
point, P3, and one down-extreme point, P2. The chain 
can easily be divided into monotone chains. Since left 
& right-extreme points, up & down-extreme 호oim 
alternate, each sequence of the line-segments starting 
from left to right-extreme point or from up-to down
extreme point (or vise versa) is identified as a monotone 
chain. The sweep-line steps are defined at vertices of 
polygonal chain and sorted by a quick-sort algorithm. It 
is assumed that a vertical sweep-line is used in the 
developed algorithm. There is no problem, if the chains 
contain line-segments in pai'allel with the sweep-line 
through using of PMC, i.e. the fundamental limitation 
of the Park et aL [17] sweep-line method is removed.

3. Sweep-line Algorithm (SL)

The proposed polygonal-chain intersection algorithm 
mainly works on a set of monotone chains. The properties 
of a monotone chain are: (1) it has no self-intersections 
among its line segments, and (2) its points are in a 
sequence order of x-values allowing an efficient use of 
the sweep-line method. The following is the explanation 
of sweep-line algorithm.

//Sweep Line Algorithm
SweepLine (Array of Points [n])
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Polygon Convert points data to lines /* n-lines * 
/ and store them in a polygon;
Polygon-^ Filter;
/* Remove collinear and close this polygon if not 
closed 더‘/

Calculate extreme point (Polygon);
/* Left or right and up or down for parallel 
monotone */
PolygonlbMonotones Convert polygon data to 
m Monotones;
SweepLineArrayFind sweep-lines array;
for —0 until n do

for 0 until m do
if monotone=PMC and sweep-line is 1st 
sweep then

take 1st of PMC as intersection points;
else if monotone=PMC and sweep-line is 
2nd sweep then

take 2nd of PMC as intersection points; 
else if monotone j intersects sweep-line i 
then

Find y-intersection between sweep
line i and Monotone j and store them in 

SLV[기j];
for i<~0 until m-1 do

for j-^i+1 until j<i do
for k—0 until n do

for kk*—k+l until kk<k do

if (sweep-line k intersects monotone i, j 
and sweep-line kk intersects monotone j, i 
respectively) then

Find intersection point;
/* Call intersection function */

else
continue; /* There is no intersection 
found */

}
}
PolygonToMonotones (Array of Points [n])
(

Make min. left extreme is the first point of polygon;
for i—0 until n do
(

if (Line[i].DX>0) then
Define increasing monotone;

사se if (Line[i].DX<0) then
Define decreasing monotone;

else
Define PMC;

SweepLineArray(Array of Points [n])
{

for i<—0 until n do
Define sweep-line as a line through this point 
with length=SWEEP_LENGTH;

Fig. 4. Data flow through sweep-line algorithm.
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/* where SWEEPJLENGTH is the length of sweep
line ‘시
Use quick-sort algorithm to sort sweep-lines based 
on x-coordinates;

}
Where: n is the No, of points or line, m: is the No. of 

monotones; Li眼.DX끄X2*X1 where X2, XI is the x- 
coordinates of line end points.

4. Information Flow 나质。ugh the 
Swwp-line algorithm

The point data are exported from CAD system in 
DXF format and imported to data filter, Fig. 4. In this 
step collinear points are removed, and stored in 
monotones. These monotones are stored in monotone 
chain. The sweep-line values are sorted and stored in 
sweep chain. And then, monotone-intersection module 
will find self-intersection points.

5.1이and Making Algorithm (IM)

The IM algorithm is proposed to handle the island 
during pocketing, Fig. 5. The algoH나im contains the 
following steps:

Step 1: Detect boundary a퍞d island polygons, make 
boundary CCW, and island CW direction.

Step 2: Make one outward offset for island and 
inward offset 랸ntil it meets for boundary up 
to meet island offset. Store the generated 
offset of boundary and island in temporary 
polygons.

Step 3: Use SL to find self-intersection points for 
the temporary polygon, and call detection 
valid polygons [23] (DVP) to find all valid

Fig. 5. Island making.

polygons.

6. Applications

This section contains two parts: Part I, shows the 
execution time for three-sample examples vs. offset 
distance for full offset. These sample examples are 
performed on PIII~8(X) MHz PC, the execution time 
calculated through a built-in Visual C++ function (refer 
to Fig. 6). It is assumed that the offset in the first 
generated polygon=50% from a cutting tool diameter 
and 90% for the remaining generated offset. Part II, 
shows the relationship between the number of offset 
and the execution time.

6.1. Part (I) Execution Time for Full Offset
As shown in Table 1, the execution time is decreasing 

while the offset distance is increasing. This variation is 
more significant for small offset distance, and almost

(b) Magician (c) Deer(효) Bearing Holder

Fig. 6. Proposed system sample example.
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Ihble 1. Sample example execution time vs. offset distance

Offset 
(mm)

Bearing Holder 
ms

Deer
ms

Magician 
ms

1 1128 522 2685
7 202 127 555

10 132 127 438
15 106 93 473
20 90 85 305
25 75 82 285

一♦— Bearing Container

—■— Deer
.-A.Magician

30001

Offset (mm)

Fig. 7. Execution Time vs. offset (for Full offset).

linearly with large values of offset distance. These results 
are plotted on a line-chart shown in Fig. 7 for three- 
sample examples (bearing holder, deer, and magician).

62 Part (II) Effect of Repeated Offset
The relationship between the number of offset and 

the execution time for the three-sample example is given 
in Fig. 8.

This tig니re shows that the execution time is increasing 
linearly for small values of offset and becomes almost

Table 2. Execution time vs. No of offset

No. of Offset Beating Holder Deer Magician

1 11 75 215
3 24 138 345
6 51 201 600

10 70 294 787
15 114 303 1235
20 152 344 1390
30 198 359 1541
50 241 359 1674

100 241 359 1674

constant for large values of repeating offset. This constant 
variation occurs when the repeating oflset value becomes 
closer to the full offset values of the application. Also, 
the figure shows that Magician starts with increasing 
rather sharply than Bearing Holder and Deer. This 
sharp variation depends on the complexity of the shape 
and the number of islands.

7. Conclusion

Presented in this paper an efficient line-offset algorithm 
for general polygonal shapes with islands. A developed 
sweep-line algorithm (SL) is introduced to find all self
intersection points accurately and quickly. The developed 
algorithm is a considerable improvement over previous 
work algorithms which were limited to handle polygons 
that having no line-segments in parallel to sweep-li가e 
directions. The proposed algorithms are tested through 
several application examples.
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